## NI 43-101 Technical Report Kimoukro Gold Project Toumodi Department, Côte d'Ivoire

Effective Date: 27 July, 2023 Report Date: 16 July, 2023

**Report Prepared for** 

## **EU Gold Mining Inc.**

Suite 750 – 580 Hornby St. V6VC386 Vancouver, BC, Canada



Report prepared and signed by Qualified Persons:

Riccardo Aquè-EurGeol-Geologist

Diego Furesi – EurGeol – Geologist

#### **CERTIFICATE OF QUALIFIED PERSON**

#### To Accompany the report entitled:

#### NI43-101 Technical Report - Kimoukro Project,

#### Toumodi Department, Côte d'Ivoire, 16 of July, 2023.

I, Dr. Geol. Riccardo Aquè, PhD, EuroGeol, as author of this report entitled "EU Gold Mining Inc. Technical Report Kimoukro Gold Project, Toumodi Department, Côte d'Ivoire" (the Report), prepared for EU Gold Mining Inc., dated 16 of July 2023, do hereby state:

- a) I am a consulting Geologist, with office in Piazza Guido Rossa, 6 53040 Rapolano Terme, Italy.
- b) I am and I have been a Professional Geologist registered at the Ordine dei Geologi della Toscana n. 1749 since 2014, and I am a registered member of the European Federation of Geologists (EFG) n. 1865.
- c) I graduated with a Bachelor in Earth Sciences from the University of Siena (Italy) in 1999 and I hold a Ph.D. in Earth Science from the same University in 2009.
- d) Since my graduation I have been continuously working primarily as a field structural geologist, and economic geologist; since 2008, I have been working as consultant geologist for the mining industry, in 10 countries in 4 continents. I have extensive experience with exploration and evaluation of ore deposits of various types, including but not limited to, structurally-controlled, greenstone and sediment-hosted, quartz vein related gold mineralization; I have been the executive geology manager at the gold mine of Laiva (Finland) in 2021.
- e) I have read the definition of "Qualified Person" set out in the National Instrument 43-101 (NI-43-101) of the Canadian Securities Administration and I do certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- f) I personally visited the Kimoukro Gold Project from February 28th to March 8th 2023.
- g) I am responsible for all the items of the present Report.
- h) I am independent of EU Gold Mining pursuant to Section 1.5 of the NI 43-101.
- i) I have read National Instrument 43-101 and confirm that this technical report has been prepared in compliance therewith;
- j) To the best of my knowledge, information and belief, as the effective date the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 15 of July 2023 at Rapolano Terme, Italy

Riccardo Aquè, EurGeol n. 1865





#### **CERTIFICATE OF QUALIFIED PERSON**

To Accompany the report entitled:

#### NI43-101 Technical Report - Kimoukro Project,

Toumodi Department, Côte d'Ivoire, 16 of July, 2023.

Diego Furesi Via Diaz, 60, 50055, Lastra a Signa (Firenze) – ITALY Phone: +39 339 60 94 869 <u>diego@eugoldmining.com</u>

I, Diego Furesi, as an author of this report entitled "EU Gold Mining Inc. Technical Report Kimoukro Gold Project, Toumodi Department, Côte d'Ivoire" (the Report), prepared for EU Gold Mining Inc., dated 16 July, 2023, do hereby state:

- a) I am a consulting Geologist based in Italy, Via Diaz, 60, 50055, Lastra a Signa (Firenze).
- b) I am a practicing Geologist and registered member of the European Federation of Geologists (EFG) n. 1189
- c) I graduated with a Bachelor in Earth Sciences from the University of Florence (Italy) in 2002 and I hold a Ph.D. in Earth Science from the same University in 2006.
- d) I have been continuously and actively engaged in the assessment, development and operation of stone and mineral processing projects since 2007.
- e) I have read the definition of "Qualified Person" set out in the National Instrument 43-101 (NI-43-101) of the Canadian Securities Administration and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- f) I personally visited the Kimoukro Gold Project several times from 2019 to date, including from February 28th to March 8th, 2023.
- g) I am responsible for all the items of the present Report.
- h) I am independent of EU Gold Mining pursuant to Section 1.5 of the NI 43-101.
- i) I have read National Instrument 43-101 and confirm that this technical report has been prepared in compliance therewith.
- j) To the best of my knowledge, information and belief, as the effective date the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 15 of July 2023 at Firenze, Italy



## Index

| 1. | Su   | mmary                                                                  | .7 |
|----|------|------------------------------------------------------------------------|----|
| 2. | Intr | roduction                                                              | 11 |
| 2  | .1   | QP Responsibilities and Site Visit                                     | 11 |
| 2  | .2   | Currency and Units of measure                                          | 12 |
| 2  | .3   | Glossary of terms                                                      | 12 |
| 2  | .4   | Data Sources                                                           | 14 |
| 3. | Re   | liance on Other Experts                                                | 14 |
| 4. | Pro  | operty Description and Location                                        | 15 |
| 4  | .1   | Location                                                               | 15 |
| 4  | .2   | Property description                                                   | 17 |
| 5. | Ac   | cessibility, Climate, Local Resources, Infrastructure and Physiography | 24 |
| 6. | His  | story                                                                  | 28 |
| 6  | .3   | Recent Artisanal Mining activity in Kimoukro permit                    | 40 |
| 6  | .4   | Recent history of the permit                                           | 42 |
| 7. | Ge   | ological Setting and Mineralization                                    | 43 |
| 7  | .1   | Regional geology                                                       | 43 |
| 7  | .2   | Local geology                                                          | 45 |
| 7  | .3   | Project geology                                                        | 49 |
| 8. | Dej  | posit Type                                                             | 51 |
| 9. | Exp  | ploration                                                              | 52 |
| 9  | .1   | Remote sensing imagery                                                 | 52 |
| 9  | .1.1 | Morphometry from DTM                                                   | 53 |
| 9  | .1.2 | Landsat 8 and Sentinel 2                                               | 55 |
| 9  | .2   | Soil sampling                                                          | 56 |
| 9  | .3   | Rock samples analyses                                                  | 59 |
| 9  | .3.1 | Petrography and SEM study                                              | 60 |
| 9  | .3.2 | Multielement analyses and Fire assays                                  | 66 |
| 9  | .3.3 | Hand held XRF readings                                                 | 66 |

| 9.4                                     | G                      | Geophysics                                                     | .67 |  |  |
|-----------------------------------------|------------------------|----------------------------------------------------------------|-----|--|--|
| 9.4                                     | .1                     | May 2019 IP/Resistivity survey                                 | .69 |  |  |
| 9.4                                     | .2                     | December 2021 IP / Resistivity survey                          | .71 |  |  |
| 10.                                     | Dri                    | lling                                                          | .74 |  |  |
| 11.                                     | Sar                    | mple Preparation, Analyses and Security                        | .74 |  |  |
| 11.                                     | 1                      | Soil samples                                                   | .74 |  |  |
| 11.                                     | 2                      | Rock samples                                                   | .74 |  |  |
| 11.                                     | 3                      | QA/QC                                                          | .74 |  |  |
| 11.                                     | 4                      | Sample security                                                | .74 |  |  |
| 11.                                     | 5                      | QP comment                                                     | .75 |  |  |
| 12.                                     | Dat                    | ta Verification                                                | .75 |  |  |
| 12.                                     | 1                      | Audit of the database                                          | .75 |  |  |
| 12.                                     | 2                      | Sample Assay Verification                                      | .76 |  |  |
| 12.                                     | 3                      | Audit of exploration work conducted                            | .76 |  |  |
| 12.                                     | 4                      | Adequacy of data                                               | .76 |  |  |
| 13.                                     | Min                    | neral Processing and Metallurgical Testing                     | .76 |  |  |
| 14.                                     | Min                    | neral Resource Estimates                                       | .76 |  |  |
| 15.                                     | Min                    | neral Reserve Estimates                                        | .76 |  |  |
| 16.                                     | Min                    | ning Methods                                                   | .77 |  |  |
| 17.                                     | Red                    | covery Methods                                                 | .77 |  |  |
| 18.                                     | Pro                    | oject Infrastructure                                           | .77 |  |  |
| 19.                                     | Ma                     | rket Studies and Contracts                                     | .77 |  |  |
| 20.                                     | En                     | vironmental Studies, Permitting and Social or Community Impact | .77 |  |  |
| 21.                                     |                        |                                                                |     |  |  |
| 22.                                     | 2. Economic Analysis   |                                                                |     |  |  |
| 23.                                     | 3. Adjacent Properties |                                                                |     |  |  |
| 24. Other Relevant Data and Information |                        |                                                                |     |  |  |
| 25.                                     | Inte                   | erpretation and Conclusions                                    | .78 |  |  |
| 25.                                     | .1                     | Risks and Uncertainties                                        | .79 |  |  |
| 26.                                     | Red                    | commendations                                                  | .79 |  |  |
| 26.                                     | .1                     | Proposed exploration program                                   | .81 |  |  |
| 27.                                     | Ref                    | ferences                                                       |     |  |  |
| 28.                                     | Ap                     | pendix 1 – soil sample results                                 | .90 |  |  |

This page is intentionally left blank

## 1. Summary

This report was prepared as a Canadian National Instrument 43-101 (NI 43-101) Technical Report (Technical Report) for EU Gold Mining inc. (EU Gold, or Company) by the Qualified Person, Riccardo Aquè (RA) and Diego Furesi (DF), on the Kimoukro gold exploration project (the Project) in the Toumodi Region, Côte d'Ivoire.

EU Gold is a Canadian registered and domiciled gold exploration and development company based in Vancouver, Canada.

K Mining SARL, an Ivorian gold exploration and development company incorporated in Abidjan, is the owner of four gold exploration permit applications, named Kimoukro, Oumè, Tiebissou 1 and Tiebissou 2, in Côte d'Ivoire. All the projects are in early-stage exploration phase. EU Gold has optioned 100% interest in the acquisition of all K Mining assets.

The Project is centred at coordinates 5.31°W and 6.83°N (WGS84), about 180 km N of the financial capital, Abidjan, and 25 km S from the state capital, Yamoussoukro. The permit lies at the junction among the autonomous districts of Lac, Yamoussoukro and Gôh-Djiboua, in central Ivory Coast.

The Kimoukro Project consists of one research permit application, and it is coded as: 2073 DMICM 18/11/2022. The Kimoukro permit application covers a total area of 14.48 km<sup>2</sup>. K Mining has priority rights on the permit as the company was owning previously existing exploration permits for about 100 ha within the boundary of the permit; the Minister of Mines agreed that previous permits were dropped jointed to a single permit; the single permit also included all adjacent available land to be permitted.

The Kimoukro permit can be accessed from the Abidjan-Yamoussoukro asphalt highway A3, hence via A4 paved road from the junction to the village of Kimoukro (32 km). The permit can be accessed year-round.

The region is subject to a humid tropical climate, with an average rainfall between 700 and 1,500 mm. Daily average temperatures range between 22 and 32°C throughout the year.

The topography of the Kimoukro project is dominated by flat and foothill landscape with elevation between 135 and 165 meters.

The natural vegetation consists of dense humid forest and clearings made for agriculture and small-scale mining.

The closest population centres to the Project are the town of Kimoukro with a population of 3,000 (2015 estimate), and Kokumbo, with a population of 8,100; there is access to a largely unskilled workforce who are familiar with artisanal gold mining and subsistence farming.

Both Yamoussoukro and Abidjan have specialist mining universities and skilled labour is easily sought. The Bandama River is on the west border of the permit and crosses its boundary twice. Mid-tension power infrastructure crosses the permit from west to east. It is envisaged that this power infrastructure could be easily adapted for any future mine development on the property.

Mobile phone network has reasonably good coverage thorough the area generally with 2G internet connection.

The Kimoukro village has facilities for hosting workforce; preliminary agreement with the local government and tribal authorities is made, to build and maintain an exploration camp and warehouse which can be located at the entrance of the village.

Most gold deposits described in West Africa fit the orogenic model, with gold hosted as brittle-ductile quartz veins, stockworks, breccias and disseminated orebodies, usually in second and third order structures forming dilational jogs, regional fold systems and rheology contrasts. Host rocks are highly variable as mineralisation is structurally controlled and include volcanic rocks, sedimentary rocks, and

granites. Mineralisation is known to occur alongside silicification, carbonization and sericitization primarily in the Birimian mafic rocks, and at the contact with younger intrusions, which in several cases are also cut by late-stage mineralised vein sheets; laterite cover and regolite altered horizons host gold-enriched layers.

In the Kimoukro project area the outcrop exposure is poor; by integration of the few natural outcrops, the artisanal mineworks and previous and recent exploration data, the geology can be sketched as a fringe of Paleoproterozoic greenstone formations including meta-volcanics mainly of basaltic composition, meta-siltstones, and meta-arenites. The mafic sequences are folded and thrusted, and cut by younger intermediate to felsic intrusions (tonalite at Kokumbo, just west of the Project, and granodiorite/granitoids); a mylonite shear zone marks the southern contact of a granodioritic intrusion. The main structural fabric (foliations S1, and S2) trends north-east, parallel to the regional Birimian trajectory. The main trend of contacts of the intermediate to acid intrusions through the permit is more ESE-WNW trending. A polyphase (progressive?) deformation can be sketched from superimposed structural features. The more intact fine-grained mafic rocks (meta-volcanics and meta-volcanoclastics) underwent low to mid-grade greenschist metamorphism and are crossed by veins; they show undeformed sulphide trails parallel to the metamorphic grain, and are cut by mineralised quartz veins. In this frame, provided the very limited data available to date, the bulk of primary hypogene mineralisation seems to be related to late D2 deformation stage, and at least in part, postdates the granodiorite emplacement.

Ductile style overprinting is best described in mylonite, where remnants of earlier schistosity and quartz veins are deformed in tight, detached folds. Brittle-ductile deformation style include brecciation, shear and fracturing of early mylonite shear fabric, which is followed by veining.

The mylonite zone, as well as the granodioritic intrusion sampled in mineworks, are crossed by mineralised quartz+albite+carbonate, gold-bearing veins hosting moderate amounts of sulphides. The mylonite contains syn-post kinematic gold-bearing sulphides and disseminated gold, as a result of transposed older veins, and perhaps some primary gold content.

To the extent of current knowledge, evidences from the Kimoukro permit are compatible with the classic structurally controlled, greenstone hosted gold deposits, and possible intrusion-related gold remobilization with and late vein systems emplacement. The structural framework and the geometry of the contacts, can be reasonably explained as a higher-order structural feature in a major transcurrent tectonic context, overprinting the older tectonic grain.

There is documented history for the Kimoukro project as a satellite of the historic Kokumbo gold district, where an operating mine was active from 1902 to 1958. The old mine entrances are located 5 km east of the property boundary. Rumors report that there are more than 40 km of underground works in the Kokumbo hill; unfortunately, no information is available about infrastructures and ultimate amount of gold produced from the mine.

Previous exploration was done mainly by Equi Gold between 1999 and 2008, and by Perspective Discovery between 2013 and 2018; the work historically completed inside the Kimoukro permit boundary included soil sampling and regional aeromagnetic survey.

Since 2019, DBD international, a private Ivorian company, and Mr. Benjamin Dje, a private person company, undertook exploration work on the Kimoukro permit in smaller artisanal and semi-industrial exploration permits; in 2022 the two companies merged in K Mining sarl, a private exploration and development Ivorian company. K Mining obtained the definition of the permit boundary, and presented application the Kimoukro exploration permit.

Through the course of work to date, K Mining has completed systematic soil sampling, rock chip sampling, grab sampling, geological mapping and IP/resistivity survey on part of the Project corresponding to the former smaller permits; UAV-borne magnetics is planned to be completed in late July 2023.

Soil sampling covered two adjacent areas of 140 ha and 50 ha respectively, totalising 748 soil samples. The best assay value was 6752.4 ppb Au and 676 ppb Ag (ICP-MS); additional 10 soil samples contained over 1000 ppb Au (Fire Assay). Twelve rock samples extracted from artisanal shafts have been analysed with both FA and ICP-MS; the maximum gold values reported are 18.9 g/t was reported for a mafic rock (volcanosedimentary schist), 30.8 g/t Au (altered granodiorite at the contact with mafic mylonite; sample 393).

Two IP/resistivity surveys have been completed in former artisanal permits, covering some 230 ha and investigating a maximum depth of 150 m, and 50 m respectively. The surveys allowed to depict the main geological units, and a structural frame compatible with brittle fracturing. The resulting estimated thickness of saprolite is also inferred.

Other permits surrounding the Kimoukro permit boundary include small artisanal exploration permits, owned by local small companies or private persons; no activity is reported. One artisanal exploitation permit, south-west of Kimoukro; there is no information about the amount of work done nor gold produced, however there is active work and a mechanised gold washing facility was in place at the time of the visit in March 2023.

South of the property, the research permit n. 464 "Beriaboukro" was explored by PDI in 2013-2017; a prospect within a broad gold anomaly zone (>50 ppb Au) extends over the SE corner of the Kimoukro project; this area is centered at an artisanal mining area which is the source of the highest reported rock sample reported by Equi Gold (726 g/t Au).

The current exploration permit including the Kokumbo hill is owned by LacGold, with PDI maintaining interest; it surrounds the Kimoukro boundaries. Known exploration covers the East side of the Kimoukro Permit, which were including on several prospects including the historic mine sites and the artisanal mineworks. Mapping, sampling and drilling activity was commenced by Equi Gold and later continued by PDI, from 1999 until 2018. In the author's knowledge, no drilling was done within the Kimoukro permit. The gold anomaly in soil stretches WNW for more than 6 km from the southern Kokumbo hill with values greater than 100 ppb, and includes the central area of Kimoukro permit. Sampling competed by K Mining confirmed and widened the anomaly zone, which remains open to the North and West.

The former exploration in the area was mostly done in the old "Kokumbo" permit, which includes the Kimoukro Project; historic exploration data and recent academic studies demonstrate the lithological and structural control on mineralisation. In particular, the metabasites (meta-basalts and meta-dolerites) host syngenetic disseminated gold-bearing sulphides at Kokumbo, and are cut by epigenetic quartz veins. The regolith and the laterite (including the argillic saprolite) host widespread supergene gold mineralisation.

To the extent of the current knowledge, there is potential for an economic gold discovery on the property. However, it must be highlighted that the Kimoukro permit is an early-stage exploration program, and considerable work is needed to advance towards economic assessments.

Key point to focus during the next phases should include: understanding of hypogene mineralisation type and stages, by studying sufficient amounts of representative samples; continue with micro- to macroscale observation to unravel the structural setting and its evolution, and properly study and describe, and eventually conveniently group, the existing rock units.

It is also recommended that the current soil grid coverage is extended further north, to follow-up the existing anomaly. The integration of the UAV magnetic survey and field evidences should help refining the local geology and shall be used for further exploration planning.

Trenching and systematic sampling will help in better understanding the nature of the mineralisation in regolite and weathered rock, as well as identify main structures and vein systems, especially in the saprock. The SW corner of the property, next to the historic anomaly, should be sampled with auger drill. For all soil sampling exercise, the depth of sampling must be representative of in-situ soil.

Multielement assay will allow for geochemical anomalies distribution, and study of possible pathfinders. The information will be needed also for further environmental assessments and considerations. Although some perspective gold anomaly zones are already identified, the above activities will provide more roust targeting for subsequent planning of an exploration drill-hole campaign.

## 2. Introduction

This report is prepared for EU Gold Mining Inc. (EU Gold, the Issuer), a Canadian mining exploration company.

In February 2023, Eu Gold signed a property option agreement with K-Mining sarl (K-Mining, the Owner), pursuant of which EU Gold has the exclusive right and option to acquire up to a 100% interest in the Permit, subject to the reservation by the Owner of a Royalty.

K-Mining is an Ivorian company focussed on exploration and development of gold projects. K Mining undertook exploration activity between 2019 and 2022 on an approximately 150 hectares area inside the boundaries of the exploration permit Kimoukro; most existing work was completed in previously owned exploration permits.

This report presents a summary of the exploration work undertaken by K-Mining that is relevant to the current early-stage exploration project disclosure, as defined by NI 43-101.

## 2.1 QP Responsibilities and Site Visit

A summary of the Qualified Persons responsible for the information contained in this report is provided in Table 2.1.

The Qualified Persons are not employees or directors of EU Gold or its subsidiaries and are each independent of the Issuer for the purposes of National Instrument 43-101 "Standards of Disclosure for Mineral Projects".

The following Qualified Persons conducted site visits of the Property:

- Diego Furesi, MSc, Ph.D., EFG member n. 1189 (QP), visited the Property several times from 2019 to 2022. The last site visit for this report was from February 28<sup>th</sup> to March 9<sup>th</sup> 2023.
- Riccardo Aquè, MSc, Ph.D., EFG member n. 1865 (QP), visited the Property from February 28<sup>th</sup> to March 9<sup>th</sup> 2023

| Item n. | Report section                                                              | Qualified Person            |
|---------|-----------------------------------------------------------------------------|-----------------------------|
| 1       | Summary                                                                     | Riccardo Aquè;              |
| 2       | Introduction                                                                | Riccardo Aquè; Diego Furesi |
| 3       | Reliance on Other Experts                                                   | Riccardo Aquè               |
| 4       | Property Description and Location                                           | Riccardo Aquè, Diego Furesi |
| 5       | Accessibility, Climate, Local Resources,<br>Infrastructure and Physiography | Riccardo Aquè; Diego Furesi |
| 6       | History                                                                     | Riccardo Aquè; Diego Furesi |
| 7       | Geological Setting and Mineralization                                       | Riccardo Aquè               |
| 8       | Deposit Types                                                               | Riccardo Aquè               |
| 9       | Exploration                                                                 | Riccardo Aquè; Diego Furesi |
| 10      | Drilling                                                                    | N/A                         |
| 11      | Sample Preparation, Analyses and Security                                   | Riccardo Aquè; Diego Furesi |
| 12      | Data Verification                                                           | Riccardo Aquè               |
| 13      | Mineral Processing and Metallurgical Testing                                | N/A                         |
| 14      | Mineral Resource Estimates                                                  | N/A                         |
| 15      | Mineral Reserve Estimates                                                   | N/A                         |
| 16      | Mining Methods                                                              | N/A                         |
| 17      | Recovery Methods                                                            | N/A                         |
| 18      | Project Infrastructure                                                      | N/A                         |
| 19      | Market Studies and Contracts                                                | N/A                         |

Table 2.1 – Summary of Qualified Persons

| 20 | Environmental Studies, Permitting and Social or | N/A                         |
|----|-------------------------------------------------|-----------------------------|
|    | Community Impact                                |                             |
| 21 | Capital and Operating Costs                     | N/A                         |
| 22 | Economic Analysis                               | N/A                         |
| 23 | Adjacent Properties                             | Riccardo Aquè               |
| 24 | Other Relevant Data and Information             | Riccardo Aquè; Diego Furesi |
| 25 | Interpretation and Conclusions                  | Riccardo Aquè; Diego Furesi |
| 26 | Recommendations                                 | Riccardo Aquè               |
| 27 | References                                      | Riccardo Aquè, Diego Furesi |
| 28 | Appendices                                      | Riccardo Aquè, Diego Furesi |

#### 2.2 Currency and Units of measure

All units of measurement in this study are in metric system, unless otherwise stated. Currency units are in Canadian dollars (CAD), unless otherwise stated. The reference system used is the WGS84/UTM zone 30N (EPSG:32630). For the geographic coordinate system, the reference system is WGS84 (EPSG:4326).

#### 2.3 Glossary of terms

| abbreviation       | meaning                                                                                                                                                           |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Currencies         |                                                                                                                                                                   |  |  |
| CAD                | Canadian dollars                                                                                                                                                  |  |  |
| CFA                | West African Franc (also XOF)                                                                                                                                     |  |  |
| Geology term       | S                                                                                                                                                                 |  |  |
| Amphibolite facies | The set of metamorphic mineral assemblages (facies) which is typical of regional metamorphism between 450°C and 700°C.                                            |  |  |
| Amphibolite        | A metamorphic crystalline rock consisting mainly of amphiboles and some plagioclase.                                                                              |  |  |
| Archaean           | Widely used term for the earliest era of geological time<br>spanning the interval from the formation of Earth to about<br>2,500 million years ago.                |  |  |
| BSE                | Back Scattered Electron: an image formed by backscattered<br>(reflected) electrons which are emitted by elastic scattering of<br>the incident (primary) electrons |  |  |
| Craton             | A large stable mass of rock, usually igneous or metamorphic,<br>which forms a major structural unit of the Earth's crust.                                         |  |  |
| CRM                | Certified Reference Material, often synonym of "standard" material                                                                                                |  |  |
| DDH                | Diamond Drill Hole                                                                                                                                                |  |  |
| FA                 | Fire Assay, an assay method for gold                                                                                                                              |  |  |
| Granite            | A coarse-grained igneous rock consisting largely of quartz and feldspar.                                                                                          |  |  |
| Granitoid          | A granite like intrusive rock.                                                                                                                                    |  |  |
| Granodiorite       | A coarse-grained acid igneous rock.                                                                                                                               |  |  |

| greenschist facies   | A set of metamorphic mineral assemblages produced by weak metamorphism of a wide range of rock types.                                       |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Greenstone           | A general descriptive term commonly in use for a suite of<br>weakly metamorphosed, mainly basic igneous rocks with<br>associated sediments. |  |
| Greywacke            | A type of sandstone.                                                                                                                        |  |
| ICP-MS               | Induced Coupled Plasma - Mass Spectrometry. A multielement assay method.                                                                    |  |
| IP/Resistivity       | A geophysical (geoelectrical) survey method.                                                                                                |  |
| Proterozoic          | A geological era from 2,400 million years to 570 million years.                                                                             |  |
| RAB                  | Rotary Air Blast, a drilling unit.                                                                                                          |  |
| SEM                  | Scanning Electon Microscope.                                                                                                                |  |
| Tonalite             | A granitoid which is an igneous, plutonic (intrusive) rock, of felsic composition, with phaneritic texture.                                 |  |
| Trondhjemite         | Is a special kind of tonalite, with most of the plagioclase in the rock being oligoclase                                                    |  |
| TTG                  | Tonalite–trondhjemite–granodiorite: a type of granite rock<br>association commonly found in Archean and Proterozoic<br>terrains.            |  |
| VLF-EM               | Very Low Frequency ElectroMagnetic, a remote-sensing survey.                                                                                |  |
| Measure              |                                                                                                                                             |  |
| g                    | grams                                                                                                                                       |  |
| Kg                   | Kilogram, 1000 grams                                                                                                                        |  |
| t                    | metric ton, 1000 Kg                                                                                                                         |  |
| g/t                  | gram per ton, equivalent of ppm                                                                                                             |  |
| a.s.l.               | above sea level                                                                                                                             |  |
| ha                   | hectar                                                                                                                                      |  |
| km                   | kilometer                                                                                                                                   |  |
| km <sup>2</sup>      | square km                                                                                                                                   |  |
| m                    | meter                                                                                                                                       |  |
| mm                   | millimetre                                                                                                                                  |  |
| ppb part per billion |                                                                                                                                             |  |
| μm                   | Micron, 1/1000 mm                                                                                                                           |  |
| ppm                  | part per million, equivalent to g/t                                                                                                         |  |
| Kv                   | Kilo Volt                                                                                                                                   |  |
| %<br>%               | percent                                                                                                                                     |  |
| Miscellan            |                                                                                                                                             |  |
| ASX                  | Australian Securities Exchange                                                                                                              |  |
| PCA                  | Principal Component Analysis                                                                                                                |  |
| 1 0/1                |                                                                                                                                             |  |
| UAV                  | Unmanned Aerial Vehicle, a drone (used for survey at low altitude)                                                                          |  |

| Metals |      |
|--------|------|
| Au     | Gold |

#### 2.4 Data Sources

The author prepared this report using information from the following sources:

- Assay data obtained from the Owner as a result of soil sampling and assay campaign;
- Visit to project site;
- Site physical inspection, observation and data validation activities, included but not limited to:
  - Review of remote-sensing study, geophysical survey and geochemical anomaly maps.
  - Selected soil sampling and assaying;
  - Recognition of artisanal mineworks, collection of rock samples.
- Public data from previous exploration enterprises signed by Competent Persons.

Sources of data used in this technical report are mentioned in the text.

The author has no reason to doubt the reliability of the information provided by K Mining.

## 3. Reliance on Other Experts

The QP's opinions contained herein are based on public data from stock market announcements and media, and private information provided by K Mining, in form of data packages and technical reports; the latter refer to specialistic consulting on geophysics, remote-sensing and microscopy/SEM studies (see related sections under chapter 9). As part of the audit conduced, the QP did check the results of the specialistic studies and had clarificatory discussion with the authors of the reports.

The QP Diego Furesi was directing the exploration activity of K Mining and had complete confidence on the work done.

The QP Riccardo Aquè did reasonable effort in reviewing and verifying the work done. A due diligence review of the information for preparation of this report was competed, which included independent reassay of soils and petrographic study of available thin sections.

The authors are satisfied that the information is accurate at the time of writing and the interpretations and opinions expressed are reasonable and are based on a current understanding of mineralisation processes and host geologic setting.

The QP has relied upon K Mining for information regarding the surface land ownership/agreements, as well as the ongoing process for the issuing of the presidential decree granting the exploration permit. Land titles and mineral rights for the project have been independently reviewed by the QP; however, the QP did not seek an independent legal opinion for these items.

## 4. Property Description and Location

## 4.1 Location

The Kimoukro permit is located in a rural area near to Kimoukro village (WGS84) 6°32'0"N, 5°18'20"W, in the Toumodi Department, in the central Ivory Coast. The city of Toumodi is in the Bélier Region in Lacs District, 195 km north from Abidjan via the A3 Highway (approx. 2 h 30 min) and 55 km south from Yamoussoukro (approx. 50 min by car). The roads are both in good condition.



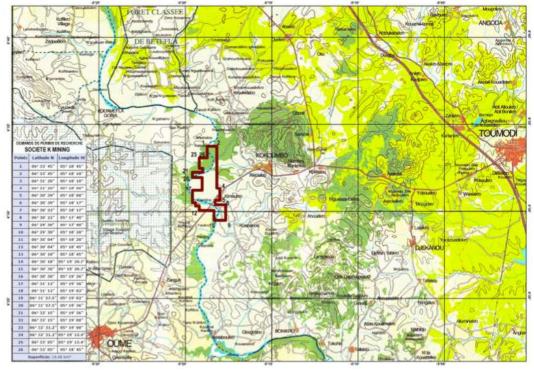

Figure 4–1 - Location of the Kimoukro exploration project.



Figure 4–2 - Position of the Kimoukro project in respect to administrative boundaries and main infrastructures. Coordinate systems: WGS84 and UTM 30N

#### 4.2 Property description

The Owner applied for a 14,48 km<sup>2</sup> industrial exploration permit on September 2022. The Permit is indicated as "Demande de Permis de Rechérche", in the National Cadastre Portal, with the code 2073 DMICM 18/11/2022, corresponding to the date of final acceptance of the exploration permit application.



COORDONNEES GEOGRAPHIQUES DES SOMMETS DU PERMIS

| Points                | Latitude N    | Longitude W   |  |
|-----------------------|---------------|---------------|--|
| 1                     | 06° 33' 45"   | 05° 18' 45"   |  |
| 2                     | 06° 33' 45"   | 05° 18' 10"   |  |
| 3                     | 06° 31' 20"   | 05° 18' 10"   |  |
| 4                     | 06° 31' 20"   | 05° 18' 00"   |  |
| 5                     | 06° 30' 39"   | 05° 18' 00"   |  |
| 6                     | 06° 30' 39"   | 05° 18' 17"   |  |
| 7                     | 06° 30' 22"   | 05° 18' 17"   |  |
| 8                     | 06° 30' 22"   | 05° 17' 40"   |  |
| 9                     | 06° 29' 30"   | 05° 17' 40"   |  |
| 10                    | 06° 29' 30"   | 05° 18' 20"   |  |
| 11                    | 06° 30' 04"   | 05° 18' 20"   |  |
| 12                    | 06° 30' 04"   | 05° 18' 45"   |  |
| 13                    | 06° 30' 18"   | 05° 18' 45"   |  |
| 14                    | 06° 30' 18"   | 05° 19' 20,7" |  |
| 15                    | 06° 30' 30"   | 05° 19' 20,7" |  |
| 16                    | 06° 30' 30"   | 05° 19' 36"   |  |
| 17                    | 06° 31' 12"   | 05° 19' 36"   |  |
| 18                    | 06° 31' 12"   | 05° 19' 02"   |  |
| 19                    | 06° 31' 57"   | 05° 19' 02"   |  |
| 20                    | 06° 31' 57"   | 05° 19' 36"   |  |
| 21                    | 06° 32' 15"   | 05° 19' 36"   |  |
| 22                    | 06° 32' 15"   | 05° 19' 00"   |  |
| 23                    | 06° 32' 31,2" | 05° 19' 00"   |  |
| 24                    | 06° 32' 31,2" | 05° 19' 12,4" |  |
| 25                    | 06° 33' 05"   | 05° 19' 12,4" |  |
| 26                    | 06° 33' 05"   | 05° 18' 45"   |  |
| Superficie : 14,48 ha |               |               |  |

*Figure 4–3 - Location of the Kimoukro Gold Project permit and coordinates*, extracted from the application for the exploration permit ("demande de permis de recherche") of September 2022

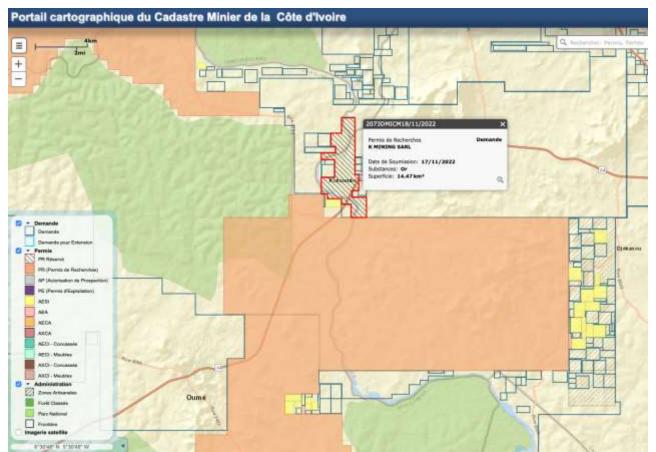
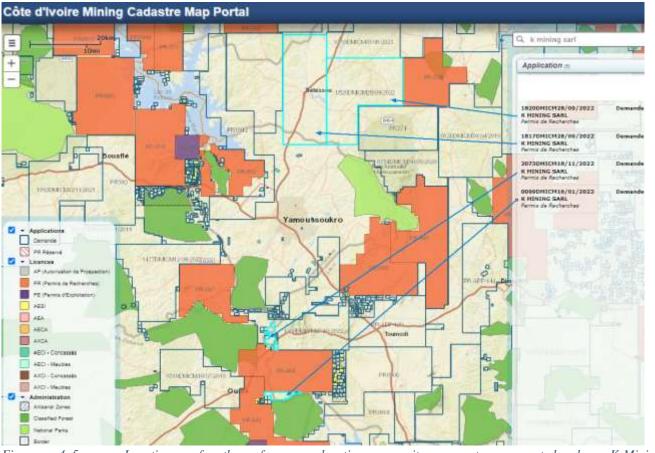



Figure 4–4 - Location of the Kimoukro Gold project "demande de Permis de Recherche", from the Cadastre Portal of the Mining Ministry (last visited: 20/06/2023)

According to the Ivorian mining law (Loi n. 2014-138 of 24 March 2014 *Portant Code Minier*), and the application decree (n. 2014-397 of 25 June 2014), the Exploration Permit is issued by Presidential Decree, on request of the Ministerial Committee.

The exploration permit is valid for a period of four (4) years and can renewable two (2) times for successive periods of three (3) years. An additional renewal may be granted for a period not exceeding two (2) years, under exceptional circumstances.

At the Kimoukro project, the site visit of the Ministerial Committee occurred in December 2022; the assessment included a record of the state-of-art of the property including the updated land use and the impact of artisanal mining. All the requirements included due diligence, payment of due fees, and accounting certification, has been accomplished


The process of releasing the permit is ongoing while preparing the current report. The permit request is in good standing with the Ministry of Mines and Energy and no known impediments exist. The Presidential Decree who will officially grant the permit, is awaited shortly.

In addition to the Kimoukro permit, the owner applied for additional three exploration permits, respectively of 14 Km<sup>2</sup> (Oumé exploration project, code 0099), 398.5 Km<sup>2</sup> (Tiebissou exploration project, code 1817), and 399.5 Km<sup>2</sup> (Tiebissou2 exploration project, code 1820); they are also included in the agreement between Eu Gold and K Mining sarl.

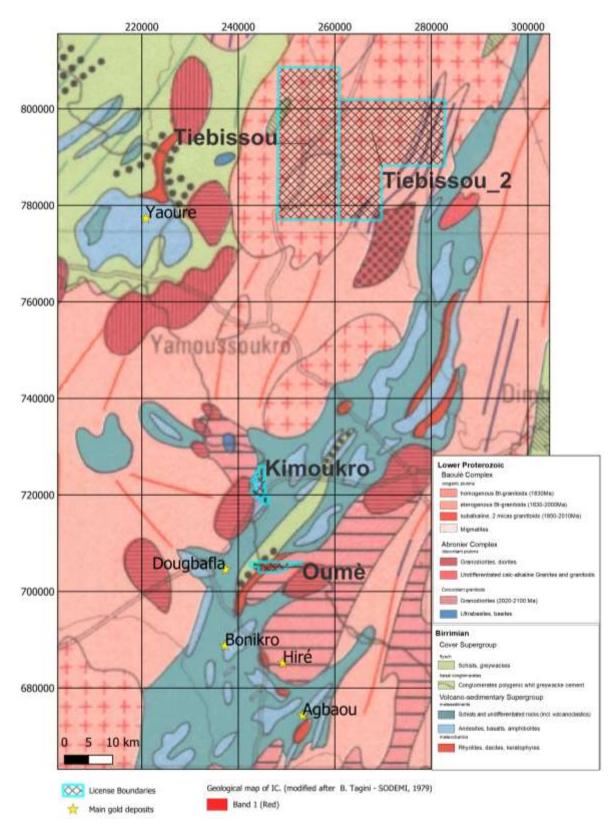
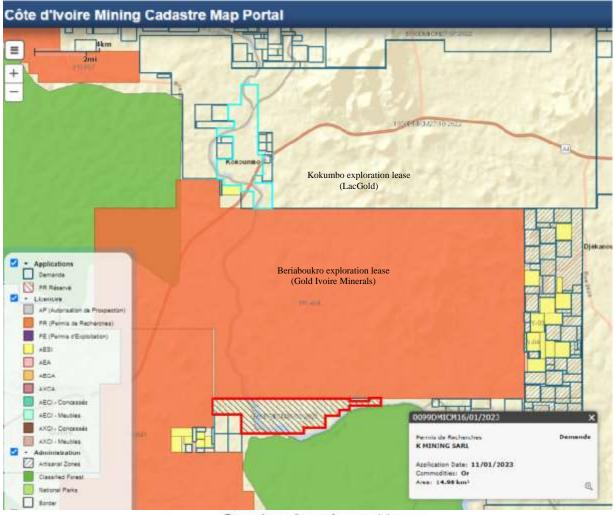
#### NI 43-101 Technical Report Kimoukro Gold Project

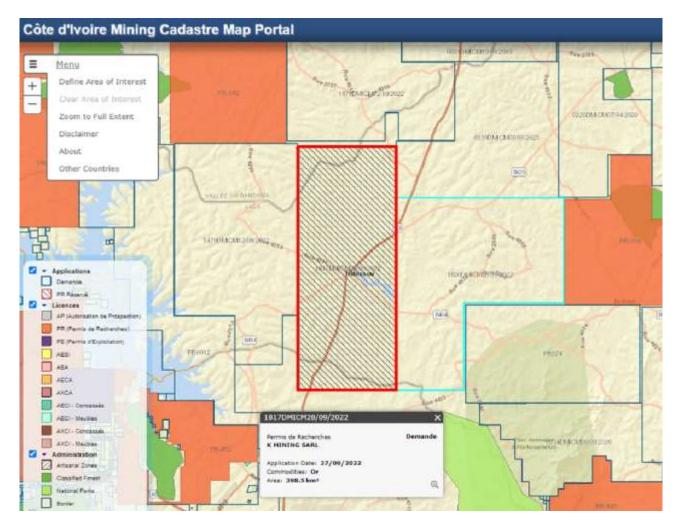
All the exploration permits are located within similar geological setting of Birimian greenstone belts of central Ivory Coast: the Kimoukro and Oumé projects are within the prolific Fereteko-Oumé greenstone belt; the two Tiebssou permits are located in between the Fetekro and the Bouaflé greenstone belts, and include perspective areas with insulated greenstones, and several major shear zones.

The present technical report only refers to the Kimoukro exploration project; the exploration activity on the additional three permits has just started with remote-sensing and regional study.



*Figure* 4–5 - *Location of the four exploration permit requests presented by K-Mining:* <u>https://portals.landfolio.com/CoteDIvoire/FR/</u> last visited: 20/06/2023).

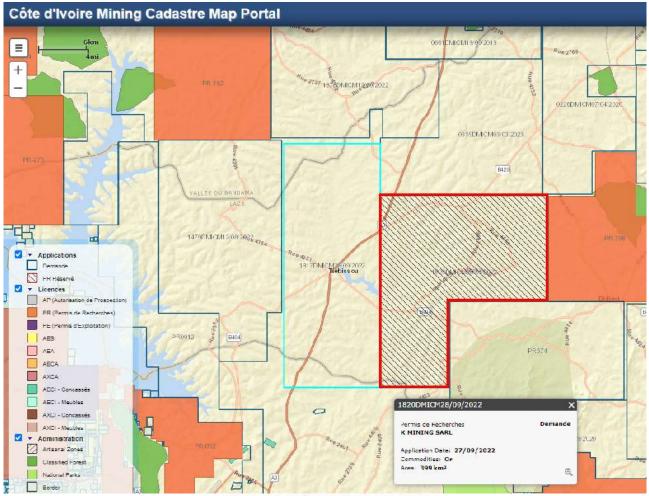





Figure 4–6 – Position of the exploration permit requests by K-mining in the frame of a regional geology map.



## Coordonnées géographiques

|       | SUPERFICIE: 14,90 km |               |
|-------|----------------------|---------------|
| POINT | LATITUDE             | LONGITUDE     |
| 1     | -06° 22' 58°         | 05°19/ 42.50° |
| 2     | 06' 22' 59'          | 05"15'00.50   |
| 3     | 00' 22' 53'          | 05"15'00.50   |
| 4     | 06" 22' 53"          | 05*14' 20.50  |
| 5     | 06' 22' 59'          | 05*14' 20.50  |
| 6     | 06* 22' 59*          | 05*13/ 66.00  |
| 7     | 06" 22' 46"          | 05"13'56.00   |
| 8     | .06" 22' 46"         | 05*15 01.00   |
| 9     | 06° 22' 35°          | 05*15'01.00   |
| 10    | 06" 22' 35"          | 05+15-22.00   |
| 11    | 06" 22' 24"          | 05*15'22.00'  |
| 12    | 06" 22' 24"          | 05*15 50.00   |
| 13    | 06* 21* 59*          | 05*15 53.00   |
| 14    | 06* 21* 59*          | 05*16 35.00   |
| 15    | 05" 21" 48"          | 05*16' 35.00' |
| 16    | 06" 21' 48"          | 05*18 43 50   |
| 17    | 00" 22' 26"          | 05"18 43.50   |
| 18    | 06" 22" 26"          | 05"19' 42.50" |


*Figure 4–7 - Location - Oumé exploration permit request (from the Cadastre Portal of the Mining Ministry: https://portals.landfolio.com/CoteDIvoire/FR/ last visited: 10/06/2023); corner coordinates from the permit request.* 



#### Coordonnées géographiques SUPERFICIE : 398,5 km<sup>2</sup>

| POINT | LATITUDE  | LONGITUDE |
|-------|-----------|-----------|
| .1    | 07*18'35" | 05*16'47" |
| 2     | 07"18'35" | 05'09'56' |
| 3     | 07*01'27* | 05*09'56* |
| 4     | 07*01'27* | 05"16'47" |

*Figure* 4–8 – *Location of the Tiebissou exploration permit request (from the Cadastre Portal of the Mining Ministry: https://portals.landfolio.com/CoteDIvoire/FR/ last visited: 10/06/2023); corner coordinates from the permit request.* 



#### Coordonnées géographiques

|       | SUPERFICIE : 39 | 99 KIII-  |
|-------|-----------------|-----------|
| POINT | LATITUDE        | LONGITUDE |
| 1     | 07°14'58"       | 05°09'56" |
| 2     | 07°14'58"       | 04°58'01" |
| 3     | 07°07'35"       | 04°58'01" |
| 4     | 07°07'35"       | 05°05'07" |
| 5     | 07°01'27"       | 05°05'07" |
| 6     | 07"01'27"       | 05°09'56" |

*Figure* 4–9 – *Location of the Tiebissou2 exploration permit request (from the Cadastre Portal of the Mining Ministry (https://portals.landfolio.com/CoteDIvoire/FR/ last visited: 10/06/2023) and corner coordinates from the permit request.* 

#### 4.3 Legal obligations

The Ministry of Mines sets minimum expenditure requirements to retain the permit, according to the program delineated in the exploration permit request presented by K-Mining sarl; the expenditure requirements for the next 4 years are detailed in Table 4-1.

| Year | Minimum expenditure |            |
|------|---------------------|------------|
|      | CFA                 | CAD        |
| 1    | 85 millions         | 190,318.74 |
| 2    | 100 millions        | 223,904.41 |
| 3    | 120 millions        | 268,685.29 |
| 4    | 145 millions        | 324,661.39 |

Table 4-1 Minimum expenditure requested by the Ministry of Mines

Conversion used: 1 CFA = 0,0022390441 CAD

# 5. Accessibility, Climate, Local Resources, Infrastructure and Physiography

## 5.1 Accessibility

The Kimoukro project is accessed using the national paved road network. The 230 km stretch between Abidjan and Yamoussoukro includes a four-lane motorway. The site is accessed using the A3 highway up to the Toumoudi exit and then the A4 road up the village of Kokumbo. The A4 paved road crosses the east boundary of the Property in correspondence of the Kimoukro village, about 3.5km west of Kokumbo village.

A new road entry can be created by enlarging the already existing footpath which starts from there. Alternatively, 2 km west of Kokumbo, an existing gravel road (in red in fig 5.1) connects directly to the permit.

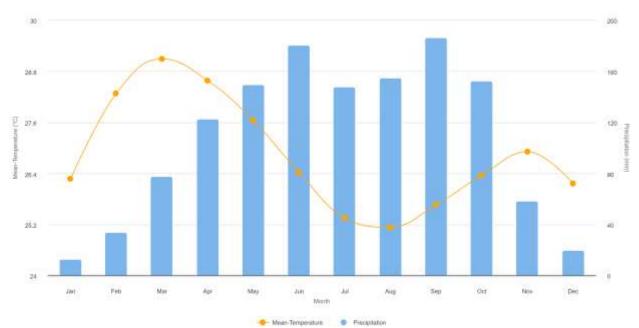



Figure 5–1 - Location and access to the Kimoukro Project from Yamoussoukro

#### 5.2 Climate

Cote d'Ivoire is located in the transition zone between the humid equatorial climate that characterizes the southern part of the country, and the dry tropical climate of the north, and it corresponds to the As/Aw zone of the Köppen-Geiger climate classification system.

The country generally experiences a rainy season from June to October and daily average annual temperatures range from 22-32°C. The region is subject to a humid tropical climate, with an average rainfall between 700 and 1,500 mm. In the north, the rainy season occurs from June to October, while the dry season is from November to May.



*Figure 5–2 Monthly climatology of mean-temperature and precipitation in Cote d'Ivoire 1991-2020 (source: https://climateknowledgeportal.worldbank.org/country/cote-divoire)* 

## 5.3 Local resources

The closest population centres to the Project are the town of Kimoukro with a population of 3,000 (2015 estimate), and Kokumbo, with a population of 8,100; there is access to a largely unskilled workforce who are familiar with gold mining and subsistence farming.

The local economy is based on farming cocoa and bananas, and the village, on the route A4, is a small local hub for the local farmers. There is little economy related to other business, i.e. minor fishing, tree and *caucciù* farming activity. A substantial part of the local economy is related to artisanal gold mining, being part of the Kokumbo mining district.

Both Yamoussoukro and Abidjan have specialist mining universities and skilled labour is easily sought. The Kimoukro village has facilities for hosting workforce; preliminary agreement with the local government and tribal authorities is made, to build and maintain an exploration camp and warehouse which can be located at the entrance of the village.

#### 5.4 Infrastructure

The Kimoukro project area is crossed by the A4 paved road, which is accessible to large size trucks. The area is crossed by the mid tension national power grid, which runs parallel to the A4 road and connects to the high-capacity grids at some 20 km distance, West and East. A power substation exists at

the village of Kimoukro, by the house of the head of the village. It is envisaged that this power infrastructure could be easily adapted for any future mine development on the property.

Mobile phone network has reasonably good coverage thorough the area with 2G and spotty 3G internet connection.

The Kimoukro village has facilities for hosting workforce and facilities; preliminary agreement with the local government and tribal authorities is made, to build and maintain an exploration camp and warehouse which can be located at the entrance of the village.

## 5.5 Physiography

The terrain of the Kimoukro project is mainly a flat area with an elevation ranging approximately from 135 to 165 m a.s.l. (figure 5.2); it is located between the left side of the Bandama River and the Mount Kokoumbo (~520 m a.s.l.).

The drainage system is well developed to the west of the license, where the homogeneous regolith defines a dendritic pattern. To the east of the license, the streams point outwards from the Kokoumbo topography high, and a radial drainage is developed.

The Bandama river is the major river of the region and is the final receptor of the local drainage; his meanders cut the eastern boundary of the property, in N-S direction. The path of the river is controlled by the nature of the bedrock, i.e. lithology contrasts, and structural features.

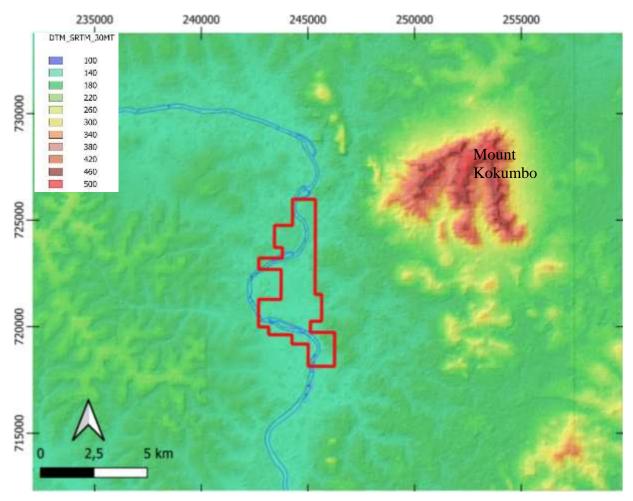



Figure 5–3 – SRTM30 elevation map of the Kimoukro project area and the surroundings

#### 5.6 Land use

From a satellite image interpretation, integrated with field observation, we estimate the following use of the land within the Kukumbro permit.

- Sparse to dense forest dominates the western and norther areas, and the rivers of the Bandama; the forest covers almost 40% of the permit.
- Roughly, 1.5% of the permit is dedicated to cocoa farming, small areas have bananas plants; all plantations and farming activity covers some 4% of the permit.
- Consolidated artisanal mining covers at least 8% (~1.0 km<sup>2</sup>).
- Low land deforested and not in special use (supposed to be for farming and harvesting, but also colonised by miners) is about 40% of the permit.

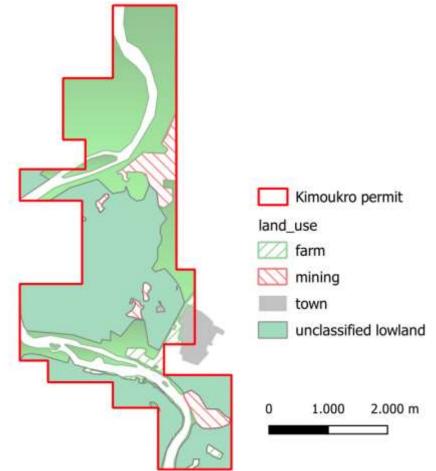



Figure 5-4 - Land use for the permit as sketched from satellite and remote-sensing imaginery

## 6. History

#### 6.1 Historical notes

The Kokumbo area and surroundings are well known since the early 1800's for the gold content of the soils and rocks, and in the 1850's for the discovery of the Kokum-Boca, one of the main ore bodies forming the Kokumbo gold district. The discovery of gold led to the establishment of an articulated protection and benefits system within the Baulè local community, eventually leading to the foundation of some villages in the region, including the village of Kimoukro, centered in the Property. Kimoukro lies some 1.5 km west of the Kokumbo hill, and about 5 km east of the Kokum-Boca mineworks).

During the third quarter of XIX century, the region of Kukumbo become the principal center of gold mining of the so-called "Baulè region" (after the migration and local settlement of the Baoulè ethnic group from the east; Chauveau, 1978). This richness of gold and other natural resources triggered an obvious interest of the French colonialists, which eventually led to a modern evaluation, assay and mine planning workflows. An industrial operating mine was operating in the period 1902-1958; in this period, the mining district of Kokumbo was the main gold producing center of the region. Since the closure of the mine, only artisanal and basic semi-industrial mining was active.

The following extracts from French newspapers and more recent scientific works refer to the area of Kokumbo Hill, and are source of the information reported in this document.

• From T.H. Kienon-Kabore (2004). La Métallurgie Ancienne De l'or chez les Akan De Côte D'ivoire : Approche Archéologique. Un Apport À L'histoire Des Techniques Métallurgiques. Revue Africaine d'Anthropologie, Nyansa-Pô, (1):

"In 1893, the government of the colony, being informed of the reputation of this area, sent the administrator Pobéguin to recognise the region. Speaking of central Baoulé, Pobéguin claims that the gold mines of Kokumbo are among the most important, that the hills surrounding the village are "entirely riddled with wells" to such an extent that the village chief has forbidden to scatter the wells d'or and proceeded to a proper exploitation of the mountains, starting with the summit. Kokumbo is thus one of the major gold mining centers in the Baoulé region. The hills and mountains were mostly exploited. We have as an example the mountains of Agboua, the hills of Bandama, the mountain ranges of Garégoua-Bocassou. On these massifs, there are the old gold mines of Aouadi, Goumansou-Kokumbo and Poresou. A large number of miners had been exploiting numerous deposits there for centuries".

Further exploration activity in the Kokumbo area dates back to the early 1900s, when the Kokumbo Company Limited was incorporated in London, with the aim of prove the gold resources and eventually sell to investors.

The following citations can be found in the history archive of French colonial companies: <u>https://www.entreprises-coloniales.fr/afrique-occidentale/Kokumbo\_Ivory\_Coast\_Cy.pdf</u> (translated from French by the author).

• From Le Journal des chemins de fer, 21<sup>st</sup> February 1903:

"Since the earliest times, the natives exploited various gold centers in this region, which also provides many species of wood for construction and furniture. The Kokumbo domain, in its southern part, is very gold-bearing. The gold is contained in quartz veins. [...]

Kokumbo mines. — The indigenous works extend for more than 60 hectares. Many shafts were dug, some up to 40 meters. Several quartz veins cross the region. We only looked at two.

One, the East vein, is very thick and measures up to 2 meters in places. Assays results have yielded only mediocre results. On the contrary, the West vein, less powerful, yields 3 to 180 grams of gold per ton, with an average of 26.9 grams.

*Exploited intensively by the natives, with their primitive means, this deposit was abandoned; it is necessary to do some additional research to definitively determine the nature of the ore deposit.* 

## [...] The Kokumbo property is reputed to be the richest in the Ivory Coast."

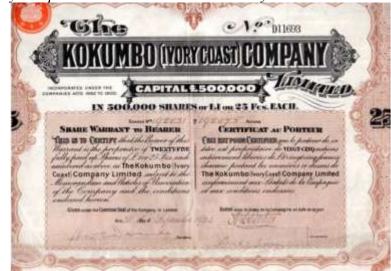



Figure 6–1 Kokumbo (Ivory Coast) Company Limited share warrant to bearer. 25 shares at 25 francs each. From https://www.entreprises-coloniales.fr/afrique-occidentale/Kokumbo\_Ivory\_Coast\_Cy.pdf

• From Le Monde Dentaire, July 1909 (Financial Bullettin):

"The Kokumbo (Ivory Coast) Company Ltd was incorporated in December 1902. By an agreement between itself, the Compagnie française de Kong and the Assim Fesu and Gold Coast Syndicate Ltd, it holds the ownership of the soil and subsoil over 30,000 hectares located near the town of Kokumbo, east of the Bandama River and its tributary, the N'zy, and another 250,000 hectares further west, approximately between Bandama and the Liberian border.

The Society has sent several missions to its ownerships. Among them it is worth to mention the one directed by Mr. Philippot, in 1905, which raised the plan of 10,000 hectares of land. These 10,000 hectares are spread over a line of about 12 kilometers, perpendicular to the confluence of the N'zy and the Bandama. All along these twelve kilometres, one encounters native works carried out either on the seam itself, with the aid of extremely primitive shafts, or on alluvial deposits.

Returning from his mission, Mr. Phillipot shared his interesting discoveries with some of his friends in Lyon who formed a syndicate in order to verify Mr. Phillipot's statements on the spot. A second mission was sent which focused its efforts on the Kokumbo-Goumansou deposit for quartz and the Aloukro valley for gold-bearing land. It was therefore on these two points that the efforts of the mission were specially directed.

Quartz. — The expert engineer checked the Kokumbo-Goumansou deposit and cut on a surface of 4.5 hectares an almost horizontal layer of quartz with an average thickness of 0.80, holding 25 grams per ton.

It establishes as follows the characteristics of the ore deposit discovered:

- Surface of the layer: 45,000 meters.
- Layer thickness: 0.80m.
- Ore cube cut: 45,000 x 0.80 = 36,000 m. cubes. Quartz density: 2.25.
- Weight of quartz: 36,000 x 2.25 = 81,000 tons.
- Weight of gold: 25 grams per tonne,  $81,000 \times 25$  gr. = kg. 2,025.
- Value of gold: 3,300 francs per kilogram.
- Value of the ore:  $2,025 \times 3,300 = 6,682,500$  francs."

The following information are found in the database of the French colonial enterprises at <u>https://www.entreprises-coloniales.fr/afrique-occidentale/Min.-indus.-immob.-Cote-Iv.pdf</u>.

The production of the Kokumbo mine district was 21 kg of gold, while in the next 6 months the production dropped to 8 kg due to problems with the mining equipment.

After the initial period, the exploitation of the mine of Kokumbo was exploited by the Minière Industrielle et Immobilière de la Côte-d'Ivoire (MICI), incorporated in Paris in 1926. The MICI program "consists in equipping the exploitation with new equipment already at work and appropriate for the most judicious treatment deposits recognized and already developed. This program also includes the development of prospecting and research work in galleries over an area that can reach 5,000 hectares under the same conditions of soil and subsoil ownership" (Les Annales coloniales, 1er décembre 1926). MCI acquired all the rights for the exploitation over 780 hectars, as well as all the mining facilities and infrastructures, and produced 40 kg of gold during the first ten months of exercise, exceeding the forecasted production of 6-8 kg of gold per month; in 1928 the gold produced per month during the next year. In June 1929 the MICI was "completing the transformation and expansion of its factories to increase its capacity to monthly processing of 5,000 tonnes of gold ore starting next August. It has considerable equipment, including gasifiers and engines of a force of 300 C.V., excavator, crushers, laundry, stampers, tube-mill, etc., etc., with power plant" (Les Annales coloniales: revue mensuelle illustrée, juin 1929).

Despite the good initial results, the costs for production and shipment, along with investments in equipment and infrastructures, caused serious accounting issues: the MICI had to sell the mine in 1930. The MICI was dissolved in 1931.

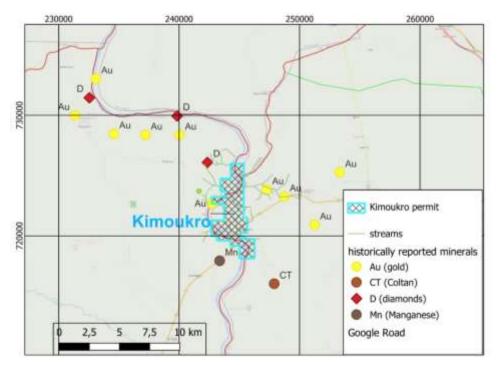
The Kokumbo (Ivory Coast) Company limited continued the gold production until the dissolution of the company in 1958, marking the official closure of the industrial mine of Kokumbo.

No detail is known about the consistency and extension of the underground mine work at Kokumbo mine; the entrances of two adits are still visible.

After the mine closure, the Kokumbo area remained active as a semi-industrial gold district, although poorly mechanised techniques have been used for the years to come: the extraction remained essentially artisanal.

The mining activity continued in the next period up do date; in present time, the area of Kokumbo is intensively exploited by artisanal and semi-industrial local miners, in trenches, pits, and shafts.

The miners mainly exploit eluvial and colluvial deposits, i.e. laterite and saprolite alteration zone. The local mining community was growing and miners joined in cooperatives, in order to handle fair trade and mitigate fights. The technique of excavation is rudimental and there is no planning; one area is being excavated, soil washed on site, while rocks are generally milled processed at the facilities in Kokumbo. The semi-industrial mining permit allows for the use of an excavator and mechanised equipment, as opposite as artisanal permit.


On the other hand, illegal artisanal mining is widespread despite the property boundaries, as it is the case in the Kimoukro permit, among many others.

Even if local media and reportages suggest that a quantity of several kg of gold is being produced per month at Kokumbo, no direct official or detailed information is available to the author regarding the historical period from the mine closure to the modern time, nor gold production reports/estimate.

As a matter of fact, the artisanal mining has never stopped at Kukumbo, moving from one spot to another, including several areas within the Kimoukro project.

#### 6.2 Previous exploration

In the 1950-1960's, country-wide reconnaissance prospecting was commenced by the Cote D'Ivoire Government Geological Agency SODEMI (Société pour le développement minier de Côte d'Ivoire). Reports available at SODEMI include a list of gold and other commodities occurrences (figure 6-2; reporting data from Degout D., 1951; Sonnendrucker, 1967; Knopf, 1969).



*Figure* 6–2 - *Various commodities occurrences from SODEMI reports (position from the portal of geo- mining data of Ivory Coast: <u>http://igeomedia.com/~kassi/gabarit web infominci/;</u> accessed 20/06/2023)* 

The Kokumbo gold district has been further explored by SODEMI and Skeena Resources Limited, since the 1980's. The work was carried out in joint venture by both companies in the period 1985-1991 and included soil sampling, geological mapping, trenching, pitting, ground magnetic survey, VLF-EM geophysical survey, drilling. The information is retrieved indirectly from public announcements by subsequent owners, i.e. Predictive Discovery limited (PDI), and from press release on local media. The exploration was continued by Equi-Gold C.I S.A. (a subsidiary of Equi-Gold NL, a former ASX listed company, EQ), with the main goal of develop the resources identified by the SODEMI JV. The exploration efforts of Equi Gold noticeably led to the development of several important deposits and future mines, including Agbaou, Bonikro, Dougbafla, Hiré (totalizing some 5.5 Moz of gold), all within

It must be highlighted that the shape of the research permit borders did change over time: the former research permit "Hiré" of Equi Gold, as well as the former "Kokumbo" research permit of Predictive Discovery, were including the Kimoukro permit currently owned by K-Mining; the Oumè permit is enclosed in the old research permit "Beriabouko" granted to Predictive Discovery, as shown in figures 6.2 and 6.3.

the same geological belt, and at a distance from 16 to 35 km SW of the Kokumbo area.

A review of the exploration activity and results from the areas of interest was done; the primary source of information, for the following paragraphs, is the Australian Security Excange (ASX) archive: <u>https://www2.asx.com.au/markets/trade-our-cash-market/historical-announcements</u>. This report only deals with the information close to, or in similar geological context of the Kimoukro permit.

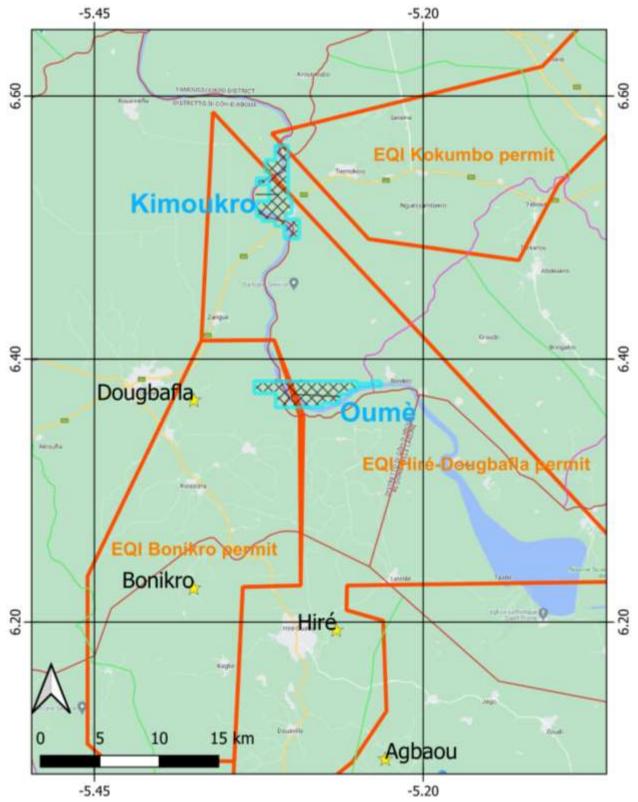



Figure 6–3 - Map showing the extent of the exploration permits owned by Equi-Gold (digitized from the maps accompanying the December 2005 quarterly report: <u>https://announcements.asx.com.au/asxpdf/20060131/pdf/3v7s7j310drxp.pdf</u>), in respect to the Kimoukro and Oumé permits currently owned by K Mining sarl. The stars mark the main known gold deposits (>1Moz) in the district.

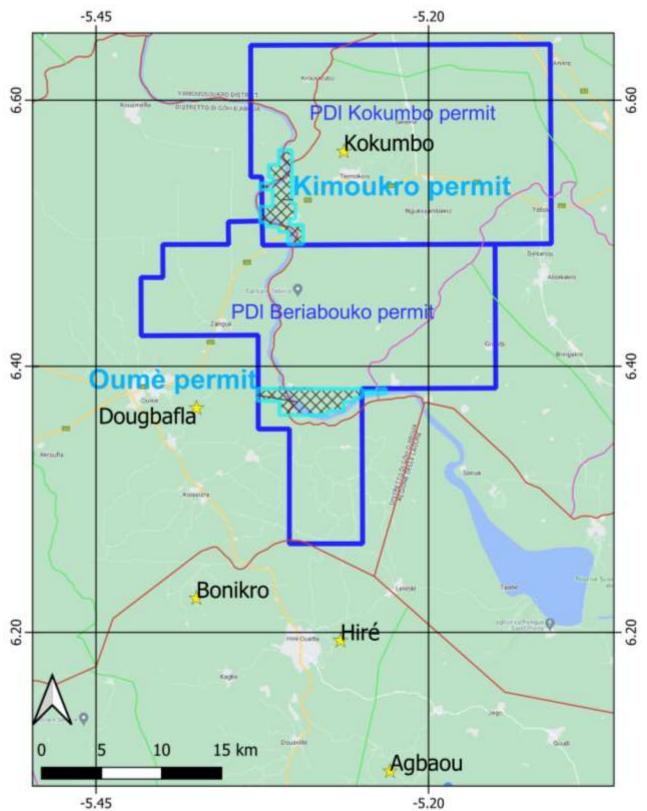
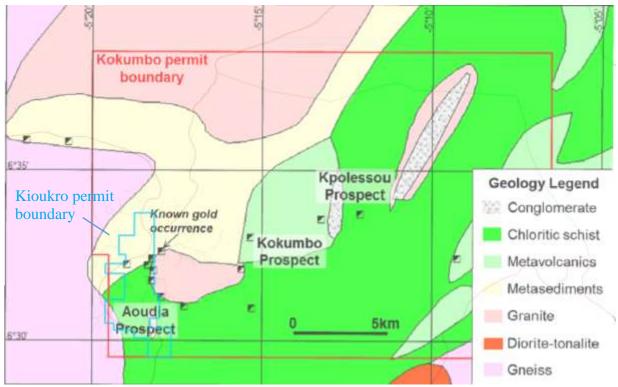



Figure 6–4 - Map showing the extent of the exploration permits owned by PDI - Toro, and LGI (digitized for 31 January 2017 quarterly report: <u>https://www.asx.com.au/asxpdf/20170131/pdf/43fn7d3rs276gq.pdf</u>), in respect to the Kimoukro and Oumé permits currently owned by EU Gold. The stars mark the main known gold deposits in the district.

In the period 1996-2007, Equi Gold completed soil sampling, trenching and initial drilling with a rotary air blast system (RAB). Soil and chip anomaly confirmed several prospects for gold within the Kokumbo and adjacent prospects. Exploration was substantially suspended in occasion of political and social crisis, i.e., in several periods around 1999 and 2002, and from late 2004 through late 2005.

Equi-gold was reporting high-grade results from some drilling at the old Kokumbo mine sites, and in satellite areas; no drilling was done within the Owner's Kimoukro permit boundary, as in the knowledge of the author. Soil and laterite sampling campaigns by Equi Gold included part of the current Kimoukro permit, where a broad soil anomaly >50ppb Au was recognized.


As a significant part of the exploration work, Equi-Gold completed a low-altitude regional aeromagnetic survey (32746 linear kilometres at 200 m spacing, 100m spacing over advanced projects only), covering several prospects including Kokumbo, and fully including the area of the Kimoukro and Oumè property (survey completed announced by Equi Gold ASX announcement of 31 March 2007).

Equi-Gold merged with Lihir Gold limited (LGI) in 2008, shortly after the opening the Bonikro gold mine (1.3 Moz indicated resources were estimated in March 2008). LGI further merged with Newcrest mining in 2010 (Newcrest market relase of 27/08/2010). Newcrest was conducting regional and focussed exploration in Ivory coast through the controlled LG CI; however, there is no significant exploration activity reported for the areas near the Kimoukro property, from 2008 to 2013.

Newcrest progressively sold its assets and left the West Africa mines in 2017, maintaining interest in the exploration, outside the Bonikro-Hiré gold district.

The research permits around Kimoukro changed owners and there is a lack of records until 2013. In June 2013, Predictive Discovery limited (PDI) reached agreement with the owner of the Kokumbo permit application, Ivoir Negoce (ASX announcements of 8/07/2013 and 31/07/2013). PDI reported that Equi Gold prepared a resource estimate for the laterite mineralised soils; details are unknown, however estimate grade was >3g/t Au. Field work commenced at the historical sites and artisanal minework. The so-called Aoudia prospect was inside the Kimoukro current research permit (fig. 6.5).

#### NI 43-101 Technical Report Kimoukro Gold Project



*Figure* 6–5 - A geology map showing the reported and observed gold artisanal mining sites, in respect to the Kimoukro permit border (source: https://announcements.asx.com.au/asxpdf/20130731/pdf/42hcl29qkbtg8w.pdf).

From 2014 through 2016, PDI in joint venture with Toro Gold limited, continued exploring the Kukumbo prospects and nearby.

In several JORC-compliant regulatory ASX announcements, it is stated that historical data and previous exploration indicate that the Kokumbo permit "*has a gold soil anomaly covering 1 km*<sup>2</sup> *close to the historic Kokumbo mine, with many values exceeding 1g/t Au, historical drill results of up to 3m at 12g/t Au and historic trench results of up to 64g/t Au*"; the public announcements refer to 286 soil and lag samples, 520 trench samples, and 11 drill-holes, having coordinates and Au content (Predictive Discover limited, ASX announcement, 22 June 2015).

The exploration work carried out by Toro Gold and PDI included the compilation of historical data, geophysical survey and new soil geochemistry and channel sampling for a total of 4800 samples; a diamond drilling (DD) program of 2000 m in 15 holes, was completed in 2016 to test the mineralization focussing on old mine works and recent artisanal pits, at the Kukumbo hill. The sampled area partially covered the central eastern side of the Kimoukro permit.

The results of PDI's exploration campaign included outstanding intercepts, according to the ASX announcements made by Predictive Discovery on 10 november 2015, and subsequently, May 15 and June 14 2016. Among the results of exploration, highlights include:

- Reported gold anomaly on soil and saprolite exceeding 2km<sup>2</sup>>0.5 g/t Au;
- several mineralised drill-hole intercepts reported, for a total of some 40 m of intercepts in 14 holes, with grade ranging from 0.53 g/t Au to 16.05 g/t Au, with best value of 7.5m at 16.05g/t Au starting from surface; a cut-off grade of 0.5g/t was used for reporting (PDI & Aurora Minerals, ASX announcement of 14 June 2016).

PDI was also owning the exploration permit called Beriaboukro, just south of the K mining's Kimoukro project and former Kokumbo permit; the Beriaboukro permit stretched south down to the Oumè property (refer to fig.6.2).

PDI released the results of the last soil and rock sampling campaign completed in 2016 (i.e. ASX announcements of 21/09/2016 and 2/02/2017): high grade values from veins and broad zones of gold anomaly in soil were reported; the north-western anomaly of Beriabroukro prospect (>100 ppb) is centred at the former artisanal mine site of Ndingionan, a locality some 5 km south of the SE corner of the Kimoukro permit; said soil anomaly stretches up to the k Ming's Kimoukro permit boundary and it is not closed (fig. 6.6).

The aeromagnetic survey previously acquired by Equi Gold and encompassing the Kokumbo and Beriaboukro, (hence including the Kimoukro permits), was reprocessed by PDI in 2010 and 2017; some of the maps are published (i.e. PDI ASX announcement of 31/01/2017; figure 6.7).

In 2018, an additional 2000 m, 15 holes diamond drilling program was completed by Toro Gold and PDI, following a ENE trend identified by high chargeability/low resistivity and anomalies of gold in eluvial soil and saprolite; the PDI's ASX announcement of 24 December 2018 reported 18 intercepts in 11 holes, with gold grade between 0.43 g/t Au and 4.22 g/t Au. This last exploration campaign was testing the historical mine of Kokumbo, and a satellite area to the NE, respectively some 5 km east and 9 km ENE of the centre of the Kimoukro property.

Apparently, no further significative exploration work was done in the Kokumbo and Beriabroukro prospects close to the Kikoumbo permit, after PDI completed the 2018 program.

In 2019, Predictive Discovery announced the decision of suspending the exploration in those areas: "Recent drill results at Kokoumbo have emphasised the complexity of the geology there. While drill assays have demonstrated significant gold on both the Kokoumbo and Beriaboukro permits, further work is needed to achieve the targeted one-million-ounce discovery that the JV partners require.

*The JV will consider its options at Kokoumbo over the coming months, allowing work at Boundiali and Ferkessedougou North to be accelerated*" (ASX announcement of 16/01/2019: https://announcements.asx.com.au/asxpdf/20190116/pdf/441wz3ny5kkhxz.pdf).

PDI continued regional exploration efforts, however the focus was on the advanced exploration and some future mine projects, including, Hirè, Doughbaflà, Lafiguè, Chapel, Boundiali, Ferkessédougou (totalising some 9Moz).

After further merging and arrangements, PDI and Toro gold dopped few assets, including the research permit Kokumbo, which was subsequently fractionated.

The gold district of Kokumbo, where the project lies, has been object of several scientific reports. Among several published papers, we can mention the following: Mortimer (1990) in his PhD thesis depicted a comprehensive lithological and structural interpretation of the Oumé-Feterko greenstone belt region. Z. Ouattara, studied the mineralisation style of several deposits in the same and adjacent greenstone belt, including the geology and mineralisation of Bonikro (Ouattara, 2020), and is a coauthor of a petrograhyc study at the Koumbo Bocca (Gouedji et al., 2022). Inza et al (2017) published a petrography study of the magmatic rocks of the southern Toumoudi-Fetekro belt. A recent paper of Hayman (2023) summarises the geology of the Tuomoudi greenstone belt supported by extensive geochemical and geochronological data.

As a summary of the previous exploration and research work, the mineralisation at Kokumbo hill and the surrounding is related to veinlets and sheeted veins of auriferous quartz (whitish, oxidised and smoky), in association with carbonates and sulphides (mainly pyrite, pyrrhotite, arsenopyrite). The host rock at the Kokumbo mine is represented by altered basalt-dolerite; this unit seems to control the stretch of the mineralisation with NNW-SSE orientation. Gold mineralisation also occurs associated with quartz veins and veinlets crosscutting younger granitoids and the intruded volcano-sedimentary rocks; the veins are multi-stage.

In addition to the mineralised veins, for which the gold grade reported is generally high (up to several tens of g/t Au in reported samples), a consistent gold content is found in lateritic and clayey regolith and eluvial soils, where the gold concentrated after leaching of the rock-forming minerals. Depending on the bedrock lithology, in the area from the Kokumbo hill down to the Kimoukro property, the mean thickness of the regolith is about 15 m, with peaks of over 30-35 m. The central part of the Kimoukro property is enclosed in the soil anomaly >100 ppb Au soil sampling competed by previous exploration companies; values are confirmed by K-mining sampling. Such anomaly stretches over 2 km depicting a broad WNW-ESE main trend, and minor NNW-SSE enlargements.

Near the SE corner of the Kimoukro permit boundary, soil anomalies >50 ppb Au are reported. Samples from rocks chip in outcrops come from metavolcanics and shists; in few cases, hi-grade quartz-tournaline veins are reported; milky quartz veins may host high grade mineralisation as well.

The following maps extracted from the mentioned published reports, provide examples of the historical exploration data within and near the boundary of the Kimoukro project.

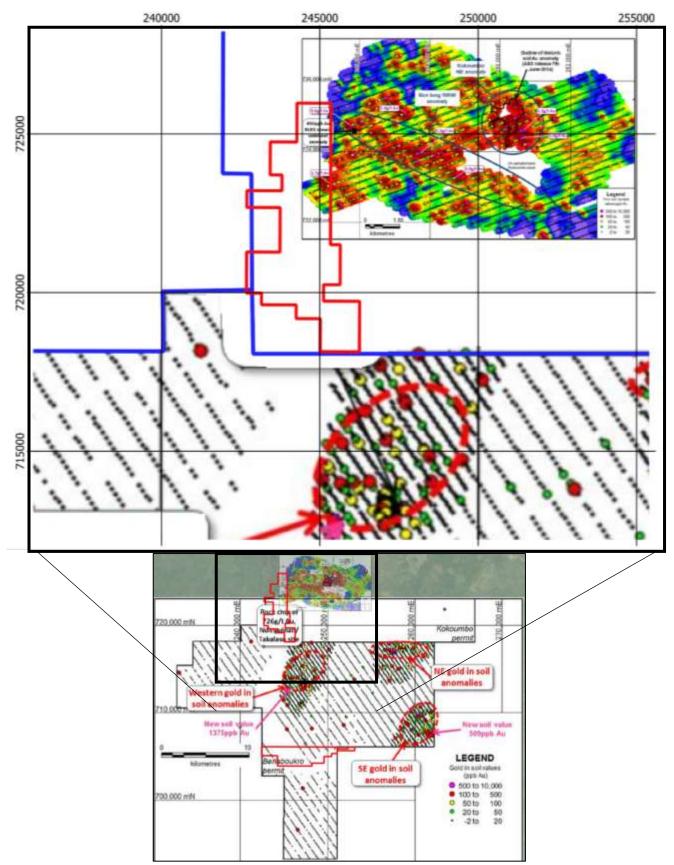



Figure 6–6 - Soil anomaly maps near the Kimoukro project (data from PDI ASX announcements of 21/09/2016 and 2/02/2017).

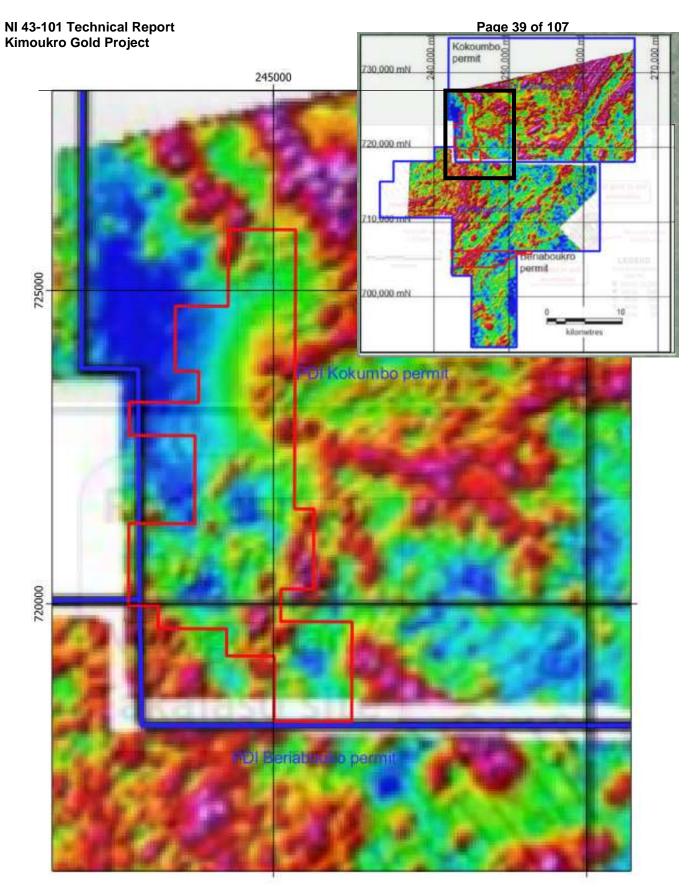



Figure 6–7 - Aeromagnetic survey reprocessed in 2016 by PDI (after PDI announcement of 31/01/2017).

#### 6.3 Recent Artisanal Mining activity in Kimoukro permit

The activity of the artisanal miners (*orpailleurs clandestins*) is well documented over the last 20 years and it became very flourishing in the Kimoukro property in the last five years.

In June 2019, when the author (D.F.) visited the site for the first time; the artisanal miners' activity was mainly concentrated in the center of the present license area, close to the village of Kimoukro. During the following years, the artisanal mining expanded more than 700 m northwards. In May 2022, more than 300 artisanal miners were working in the area, and scattered shacks and even a market, were present. It is worth to mention that the artisanal miners noticed the exploration activities through time, and in particular, the soil sampling campaign done in 2019 by K mining; they expanded quickly to cover the sampled area and behind, cutting trees and making room for their mining works, which lead to a complete deforestation of the norther portion of the sampled area, a great number of prospecting holes, exploited pits, washing pods, resulting in very uneven terrain. This uncontrolled expansion of the illegal mining was progressively increasing the risks and the dangers for the farmers and the local population, other than rising serious environmental concerns. The same happens country-wide. Monitor study have been carried out to understand the impact of the artisanal mining for health, environment and social point of view (e.g. Ahoussi et al., 2020; Sylvain et al., 2020), and a police force to fight illegal mining (unités de lutte contre l'orpaillage illégal) was formally established in 2019. In this frame, a police operation was done in November 2022 at the Kokumbo and nearby areas, which included burning some facility and equipment. Few officers an several miners resulted injured and five miners died, as reported in the media https://www.linfodrome.com/societe/81546-lutte-contre-l-orpaillage-illegal-plusieurs-(e.g., morts-dans-des-affrontements-a-kokoumbo-la-sous-prefete-exfiltree; accessed 10/06/2023).

As a consequence, the illegal activity within the Kimoukro boundary was very reduced at the visit of the project, in March 2023: most clandestine miners were hiding, and only a few dozens of illegal miners were present and actively working, in the north-western part of the project area. Remnants of burned equipment and abandoned working sites prevailed in the norther part of the actively exploited zone; the market and the camp were dismantled.

The artisanal mining in the area is, and has been, focussed on alluvial soil/laterite, regolite and vein exploitation. The water needed for the activities is pumped to the pods from the Bandama river.

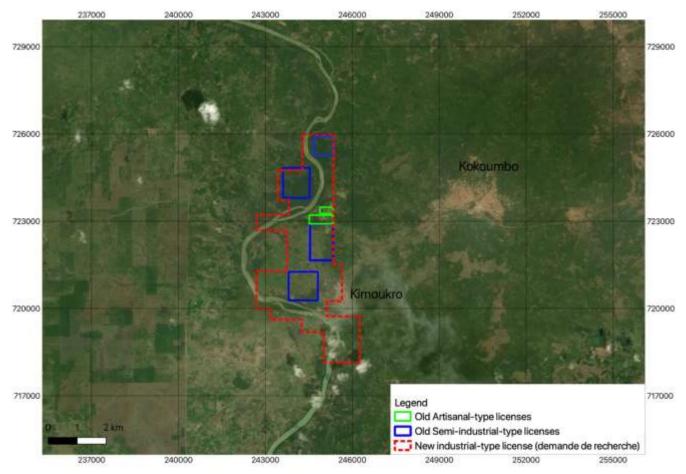
The soil is extracted from small pits randomly placed, and expanding progressively; in some case the miners follow the quartz concentration in the regolith and empirically look for enriched horizons. The depth of the excavation, which is entirely by hand, reaches 6-7 m in some of the wider pits, the surface of which is on the order of 2000 m<sup>2</sup>. The soil/regolith is washed using carpets placed on small washing devices, by the excavation pits, or in washing spots serving several diggers, and using rudimental motorised tools. The water is added to separate clay and sand fractions from the ore; free gold is normally present and well visible. The ore is thus concentrated and gold is usually extracted at the site using mercury amalgamation and liberated by heating on bonfire. Miners put effort in recovery the mercury for reuse. The other exploitation occurs at greater depth in shafts reaching the solid rocks. Many shafts were visible at the time of the visit, the author counted over 30. According to the local miners, most of the shafts are 1.0-1,5 m wide and reach some 15 m of depth, where the rock becomes harder and not diggable by hand. Nevertheless, a couple of shafts where as deep as 40 m, and quartz veins and hard rocks were recovered from there. Wood reinforcements are used to stabilize the hole, and rudimental tools are used to extract the ore and bring to the surface. Horizontal excavation at depth is limited to few meters, as the mining method is completely by hand and in poor safety conditions, with no planning and no direction.

The ore from rocks and veins is tested with hand crushing and panning at the site; when it is believed to host gold, virtually all the rock ore is transported for milling and processing to the facilities at the nearby village of Kokumbo.

The reject from the excavation and from the soil washing, is released at the working spot. The expansion of the illegal miner's activity led to a massive reworking of the top soil for 1 to 4 m of thickness, as clearly visible in an area of over 20 ha within the property.



Figure 6–8 - Artisanal miners' activity in the project area at March 2023. A: washing and excavation facility, soil and saprolite. B and C: shafts and trenches to mine quartz veins (depth of 15-20 m); D: former central area of the mining camp, former market. E: washing with a mechanised tool. Note the thickness of reworked soil.


#### 6.4 Recent history of the permit

Before November 2022, the former owners of the Kimoukro permit were DBD International, an Italian-Ivorian company, and Mr. Benjamin Dje, a private person. The latter was the holder of a 13 ha and a 25 ha artisanal-type exploration permits (in green in fig.6.2). DBD International was the holder of n.4 semiindustrial exploration permits (blue in fig. 6.2), that consisted in three licenses of 100 ha each one and one 40 ha license at the top north.

In November 2022, DBD International and Mr. Benjamin Dje merged in K-Mining sarl, a private Ivorian company incorporated in Abidjan (the current Owner), and subsequently the Ministry issued the presentday exploration boundary (dashed red line in fig. 6.2), which included all the previous areas, with granted right of priority, being the sole companies actively exploring the area in the last years.

According to the Ivorian Mining Code (LOI n. 2014-138, March 24<sup>th</sup> 2014), K-Mining applied for the exploration permit in November 2022 by fulfilling the requests set forth in the Article 19, concerning the provision of information on previous experience in the mining sector, the indication of the Exploration Manager and the disbursement of the financial deposit established by Ministerial Decree.

The exploration activity concluded by DBD and Mr. B. Dje are treated as K Mining exploration; details are presented in chapter 9.



*Figure* 6–9 – *State of the licenses before November* 2022. *Semi-industrial and artisanal-type exploration permits (in blue and green). The dashed red line represents the perimeter of the present-day industrial license.* 

# 7. Geological Setting and Mineralization

# 7.1 Regional geology

West Africa, with presently approximately 10,000 t of gold endowment, is one of the world's greatest gold provinces and the largest Paleoproterozoic gold-producing region.

Most gold deposits are concentrated within the 2.25-2.2 Ga greenstone belts of the Man-Leo shield, forming the southern part of the West Africa craton, which includes Ivory Coast (Goldfarb, 2017).

The Man-Léo shield of the West African Craton is made-up of an Archean domain to the west (Man-Kenema, 3600-2500 Ma), and a Paleoproterozoic domain to the east (Baoulé-Mossi, 2500-1800 Ma); the two domains are separated by the Sassandra fault system (Bessoles, 1977).

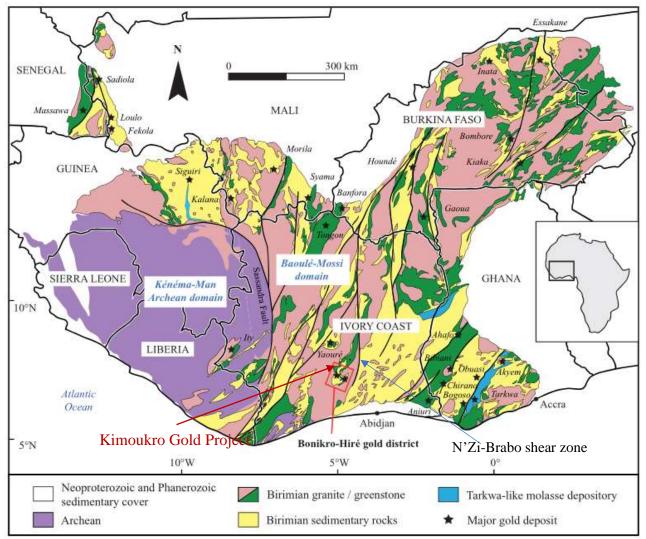



Figure 7-1 – Simplified geological map of the southern part of the West African Craton. The Kimoukro Gold Project is in the Bonikro-Hirè gold district. Map adapted from Masurel et al., (2019).

Birimian (from the Birim River in Ghana) is the classical name for the Paleoproterozoic rocks of West Africa, including the Baulé-Mossi domain. Eburnean and Birimian orogen, from the names of the main Supergroup or the regional collisional orogeny, are two terms used in literature to describe the West Africa Paleoproterozoic accretionary-collisional orogenic belt, known as Baoulé-Mossi domain. The

latter extends for at least 2,2 million km<sup>2</sup>, encompassing Guinea, southern Mali, Ivory Coast, Ghana, Burkina Faso and western Niger, as well as the Kéniéba (Mali-Senegal) and Kayes (Mali) inliers. The size of the orogen is at least of the same order as that of the European Hercynian orogen. A recent paper of Grenhol et al. (2019) provides a comprehensive interpretation of the Birimian (Eburnean) orogen. Accordingly, the latter was "driven by largely continuous NW-directed indentation during regional convergence, which affected an initially elongate volcanic arc system". This indentation implies local structural complexity, and diachronous periods of extension and compression, and changes in the style and composition of intrusives and supracrustal successions during the orogeny evolution, with variations in space and time of structures and magmatism. An important inferred step is the change from continentarc collisional systems to more defined continental collision, where the landmass in between the Archean shields experienced exhumation and contemporaneous deposition of widespread submarine to aerial volcano-sedimentary sequences. The rheological change associated to the consumption of oceanic crust and related cover, and the exhumation of granitized crust, in a context of continuous tectonic convergence, can explain the onset of a dominant strike-slip tectonics, local extensional domains, and overthrusted limbs.

Alternative model for the geodynamic and structural evolution of the Baulé-Mossi domain exist: i.e., Vidal et al. (2009), among others, propose structural models of domes and basins set up by gravity and vertical tectonics during the geodynamic evolution of the Eburnean.

A variety of local complexity can lead to the differences on the polyphase deformations recorded by Birimian rocks; this also may depend on the different position in the structures, different strain ratio, rheological conditions, and so on. However, three main tectono- metamorphic phases (respectively, D1, D2, D3) are commonly described in the central Baoulé-Mossi domain (e.g. Billa, 2005, Milesi at al., 1992), as summarised in the next paragraphs.

### **D1** Deformation phase

Ca. 2120 Ma. SE-NW continental convergence, closure of the existing oceanic domains, arc-back-arc systems and related intrusive and volcano-sedimentary rocks. Thrusting at the block edges is accompanied by amphibolite (and locally, granulite) phase metamorphism, and associated (syn-D1) magmatism; the intrusions become progressively more calc-alkaline, and volcanism more felsic.

#### **D2** – **D3** Deformation phases

Ca. 2100 Ma. The convergence continued in a NW-SE to NNW-SEE direction, similar to that of phase D1. The style of D2 deformation is, however, very different, being marked by the development of regional, mostly sinistral, strike-slip structures, which often reactivated earlier structures and are locally associated with SE-verging thrust zones.

A **D3** deformation phase is best described as progressive, late-stage D2 deformation, with a change of tectonic convergence to a SW-NE direction. NE-SW dextral strike-slip faults, and as a deformation phase which is coeval or late, in respect to the associated magmatism.

The metamorphism associated to D2 phase is generally weak (lower to medium greenschist facies). **D2 intrusions** 

2110-2080 Ma. Among the granites and granodiorites considered as synchronous with the D2 deformation, two types of intrusion of different geodynamic significance are recognized: it is

- The leucogranites, present mainly in the Comoé Basin (Ghana, Ivory Coast) and Ferkesedougou Basin (Burkina Faso, Ivory Coast), in a context of crustal melting on thick crust;

- The Iate-D2 calc-alkaline granites and monzogranites in the southern Siguiri Basin (with Au-Cu mineralization in porphyry-like setting) and western Ivory Coast (Ity deposit?), emplaced in a subduction-type context.

Finally, localized granitic intrusions (Guinea, Ivory Coast) occurred in the final stages of the D2 deformation (syn-post D2; i.e., Bonikro granodiorite, Masurel et al., 2002b) and locally show an alkaline trend, thus suggesting progressively more important crustal contamination.

A further deformation phase, **D4**, is related to much later accommodations and is represented by throughgoing faults.

Gold mineralization occurred in separate stages through time, and in relation to the local geodynamic accidents. Most gold deposition occurred between 2100-2095 Ma, subsequent to the strike-slip tectonics, and high-K plutonism following the continental collision, which is at the end of the orogenic evolution (D2 and D3 deformation events). Indeed, the mineralisation styles of the Birimian gold deposits are best described as shear-hosted greenstone, or orogenic (lode) gold type; however, significant examples of different style of mineralization are known, including carbonate-host, paleo-placer, and porphyry-skarn deposits, as well as intrusion-related gold systems within some of the greenstone belts. In this latter case, mineralised sheeted vein systems are locally present as a product of the brittle deformation during intrusions colling (Goldfarb, 2017; Masurel et al., 2022a). The gold deposits in the area of Hiré and Bonikro, up to Kokumbo, present a variety of shear-hosted gold mineralisation overprinting an earlier, intrusion-related gold deposition (Ouattara et al., 2020; N'Guessan et al., 2017; Masurel et al., 2022b). In this frame, the brittle-ductile deformation associated to the late-stage of D2 and D3 tectonic phases is one key-factor for the efficient concentration and deposition of gold in both orogenic and late-magmatic setting.

## 7.2 Local geology

The local geology refers to the Fetekro-Oumè shear belt, one of the greenstone belts occurring in central Ivory Coast, and delimited by faults and shear zones; the greenstones and the associated granites, are folded in upright, tight structures reflecting the compressional to strike-slip evolution of the Boulé-Mossi Domain. The Fetekro-Oumé greenstone belt stretches for some 170 km in SW-NE direction and is cut and offset by the >500 km-long N'Zi-Brabo shear zone (see fig. 7.1).

The Fetreko-Oumè greenstone belt (*sillon de Fetreko*) has been studied in detail by several authors: Mortimer (1990; 1992; 2016), provided a formalisation of the volcano-sedimentary sequence of the Toumoudi<sup>1</sup> volcanic group. Accordingly, the belt is characterized by pre-Birimian remnants of migmatitic gneissic and amphibolitic rocks (named Kan River gneisses), and a Birimian sequence consisting of two granitoid generations which intruded shists, metavolcanics of intermediate to acid composition, quartzites, volcanoclastic sequences. The sequence of the Toumodi volcanic group can be summarised as a pile of tholeiitic basaltic rocks, in massive to pillow-structure, and related cover of tuffs and sediments derived from volcanic rocks; the composition of the volcanic products and derived sediments, becomes acid upwards; rocks of intermediate composition are uncommon (figure 7.3). The sequence underwent lower to mid-grade greenschist metamorphism and occurs as overthrusted and folded package of greenstone belts. The younger intrusives cutting the sequence are of two main types: a biotite granite and a two-mica granite.

In a recent paper, Hayman et al (2023) propose an integrated interpretation of the Fetekro greenstone belt, which is called Tumodi greenstone belt to indicate the southern portion of the structure, west of the N'Zi-Brabo shear zone. The research fills gaps in terms of age and geochemistry of rocks (fig. 7.2). The data come from extensive geochemical sampling and radiometric dating, with a high number of samples obtained from the Kokumbo drill core.

The structural architecture of the Fetekro-Oumè greenstone belt is complex and made by multiple events. The general architecture can be explained as a NNE-SSW trending tight synclinal fold system, depicted by the volcanic and volcanoclastic sequence. The latter is in contact with the gneisses and granites of the

<sup>&</sup>lt;sup>1</sup> The Tumoudi volcanic hill is located 5 km East of the Kimoukro project.

Khan Group by means of thrust faults and shear zones. Such a contact, with significant change in metamorphic grade and nature of the rocks, is interpreted as a crustal of primary regional importance; the main shear zone, the N'Zi-Brabo shear zone, has a number of anastomosing branches, with local names. These branches cross-cut and offset the syncline structure, which appears repeated.

The Kimoukro project lies on the western limb of this deformed syncline structure. Late intrusives (granitoids) are discordant with this system, but appear to be controlled by some of the pre-existing tectonic lineaments.

The geology map of figure 7.2, which is basically a lithology map, shows a silicified zone in the Permit area, which is mapped inside the volcanics and volcanoclastics rocks of the Fetekro greenstone belt.

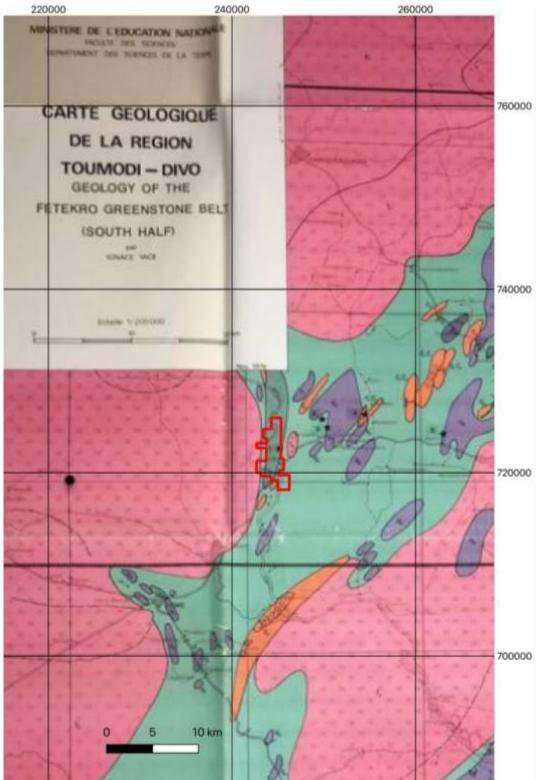



Figure 7–2- Geology map of the Fetekro Greenstone Belt with location of the historical gold findings (black stars). From Carte Geologique de la Region de Toumodi – Divo, scale 1:200.000, year 1976.

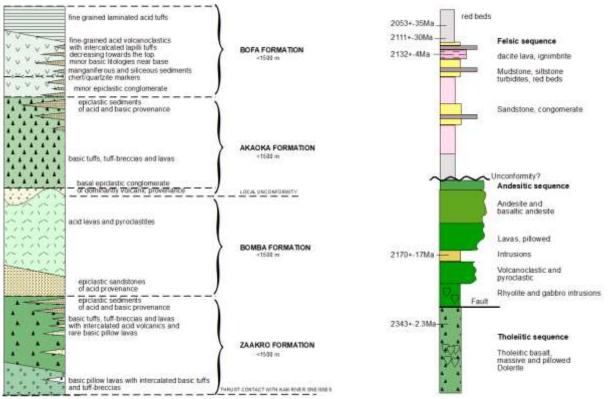



Figure 7–3 - Stratigraphic column of the Toumoudi volcanic group, according to Mortimer (1990, 1996) and Hayman (2013)

## 7.3 Project geology

A first attempt to draw a preliminary geological map of the Kimoukro project area was done by the authors by collecting all the information available to date. The project area is characterized by a cover of eluvial and colluvial soil, and alluvium, therefore there is relatively little information directly available due to scarcity of outcrops. Direct evidence on the local geology derives from the rock tailings from artisanal miner's shafts and mineworks, and very few natural outcrops, in the Bandama river. Additional information come from academic papers and exploration reports.

The rocks belong to the Paleoproterozoic volcanic arc of the Toumodi Greenstone Belt domain and has been divided according to the work of Hayman et alii (2023).

The central part of the license is represented by the basalts (b) of the tholeiitic sequence (ca. 2.35Ga), which is the oldest volcanic sequence of the Toumodi Greenstone Belt. Two outcrops of basalts are present along the Bandama river with NNE-SSW trend.

The tholeiitic sequence lies next to the andesitic sequence (ca. 2.2-2.16 Ga), which represents the immature or nascent arc evolution phase of the Birimian orogenesis. Here it is represented by finely bedded sandstones (FBS) of andesitic composition and massive or thick bedded andesitic sandstone (TBS) affected by greenschist phase metamorphism. Indeed, they are more or less deformed but always show a primary bedding, which is likely transposed by a first deformation D1, over a S1 foliation; this main trend is N-S and SW-NE oriented, and it is parallel to the regional and local trend of the contacts between greenstone units. The fabric is gently folded and crossed by axial plane cleavage, at right angle to the metamorphic grain.

Granitoids related to the post-orogenic magmatic events (ca. 2.2-2.07 Ga) are dominant in the northern and southwestern parts of the Kimoukro permit. Two broad groups of plutonic felsic rocks are recognized by many authors (Hayman et al. 2023 and Grenholm et al. 2019). The first group is formed by the relatively younger plutons (<2.15 Ga), that ranges from monzogranite to granodiorite in composition (for example the Anikro, Bonikro and Toumodi plutons). The intrusive granitoid (G) in the central-eastern and south-western part of the license belong to these younger plutons. The hand samples and petrography descriptions report weakly deformed, bleached granitoids, with albitic and sericitic-to white mica static replacement over feldspars; the interpreted protoliths are biotite granodiorites to granites. The alteration overprint postdates the deformation.

The older plutons (>2.15 Ga) are referrable to the diorite-tonalite- granodiorite-granites suites (Gn) and are present in the north-western and southern part of the license.

In the central part of the area, the contact between greenstones and granite is bordered by a mylonitic deformation zone; the schistose, mafic-rich rocks to the south, record localised deformation which affects at least one early foliation, and quartz-carbonate veins with sulphides. Progressive deformation was observed in thin section, suggest an evolution from ductile to brittle-ductile environment for this mylonite event, having brecciation and brittle shear deforming the mylonite fabric. The last recognized deformation is marked by kinks and brittle structures (i.e. dilation veinlets), and crosscuts all the previous structural architecture. The position of the mylonite, its general trend (WNW-ESE) and the deformation at the edges within the granite (for the limited observation to date) is compatible with a direct link with the granitoid emplacement.

Mineralised quartz veins, with variable thickness up to 50 cm (observed), are present in the Project. From the artisanal mineworks, it was possible to infer the position and trend of some veins, which strike mostly NW, with few E-W and few N-S exception. The position and orientation of the inferred veins, is in good agreement with the structural framework inferred from the geophysics.

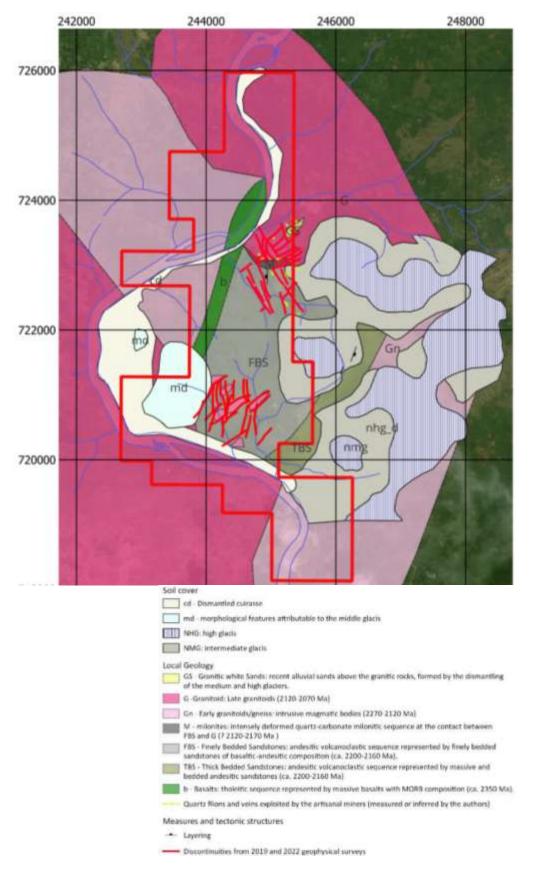



Figure 7-4 - Preliminary geological map of the Kimoukro project area

# 8. Deposit Type

Several gold deposits exist in the Fetekro-Oumé shear zone; in the southern zone (Bonikro-Hiré-Oumé-Kokumbo district), deposits totalising several million ounces are located within 40 km radius. One common character for all the deposits, is the proximity to the contact between greenstones and granite-gneiss complex. The common description for the deposit fits a shear-hosted, orogenic mesothermal system, where the bulk of the mineralisation occurs as main gold lodes in form of single or anastomosing veins. The veins mostly formed in brittle-ductile conditions, and in a relatively short time spam. In few occasion, a younger mineralised sheeted vein system exists. However, despite the short distance and similar geology, substantial peculiar differences exist, highlighting the impact of host lithology and the contribution of intrusive emplacement, to the gold mineralisation. The gold deposits in the area of Hiré and Bonikro, up to Kokumbo, present a variety of shear-hosted gold mineralisation overprinting an earlier (late Eburnean), intrusion-related gold deposition (Ouattara et al., 2020; N'Guessan et al., 2017; Masurel et al., 2022b).

In this frame, the brittle-ductile deformation associated to the late-stage of D2 and D3 tectonic phases is one key-factor for the efficient concentration and deposition of gold in both orogenic and late-magmatic setting

Referring to the historic Kokumbo mine, adjacent to the Project, the mafic metavolcanic and derived metasediments have been subjected to extensive alteration processes, including chloritization, sericitization, epidotization, carbonation, sulfidation, and silicification through hydrothermal veins. These alterations have contributed to the concentration of sulphide gold mineralization at Kokumbo. The sulphide mineralization within these metabasites is primarily syngenetic and can also be found as late epigenetic veins consisting of quartz and calcite. The main metallic minerals associated with the mineralization at Kokumbo, are pyrite, arsenopyrite, and chalcopyrite (Gouedji et al., 2022).

To the extent of the current knowledge, the Kimoukro Project presents mineralisation style in agreement with the general model described for the adjacent property. The gold mineralisation is known in form of through-going veins striking with different orientation, and crossing all the rock types; evidences of polyphase mineralisation have been found.

Supergene gold mineralisation also occurs in regolite horizons, either in remnants of laterite, eluvial soils, and in argillic-altered saprolite.

# 9. Exploration

Since 2019, the former owners, DBD International and Mr. B. Dje, started regional and Property exploration, with field focus where the artisanal miners' activity was well developed. The exploration activity included:

- **Remote sensing**: Radar images elaboration for the main structural lineaments assessment and multispectral optical images analysis on a 500km<sup>2</sup> survey area at 1:50.000 scale.
- Soil sampling: Systematic sampling of the soil cover and laboratory analyses.
- **Rock sampling:** Collection of rock samples from the artisanal miners' shafts and holes; a selection was submitted to geochemical and petrographic and electron microscope analyses.
- Geophysic survey (Induced Polarization and Resisitivity): The IP/Resistivity survey was carried out over two different sub areas inside the Property and consisted of:
  - Area north n. 14 lines of pole-dipole profiles, oriented ca. N90°, with a cross-line spacing of 100 metres (12.47 line km); the areal coverage is approximately 1.3 km<sup>2</sup>;
  - Area south n.10 lines of pole-dipole profiles, oriented ca. N90°, with an across-line spacing of 100 metres (9.37 line km); the areal coverage is approximately 0.85 km<sup>2</sup>.

## 9.1 Remote sensing imagery

In December 2021, Geofield srl (Italy) completed a satellite remote sensing data based on Landsat 8 and Sentinel 2 images (Iandelli, 2022). The study included regional morphometric analysis of drainage and tectonic lineaments (12.000 km<sup>2</sup>) from active remote sensing (radar), and the color composites, PCA and band ratios for a more restricted area (90 0km<sup>2</sup>). A 30-metre resolution Digital Terraine Model (DTM) was obtained from the SRTM NASA/NGA Mission, tile "n06\_w006\_1arc\_v3.tif" (through USGS EarthExplorer tool: <u>https://earthexplorer.usgs.gov/</u>). The datum was filtered by using the r.denoise (smooths/despeckle) algorithm for noise reduction (Sun et al (2007).

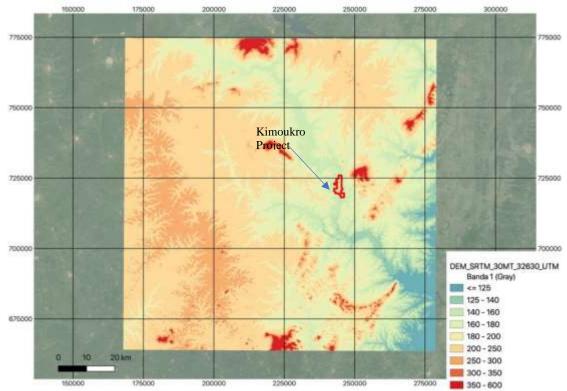



Figure 9–1 – DTM obtained from satellite imaginary (approximately 12.000 km<sup>2</sup>) with 30m ground resolution.

### 9.1.1 Morphometry from DTM

A total of 1.765 morphological lineaments of different type were extracted from the DTM; the linear features show W-E and NW-SE preferential alignment. Fold closure, and intrusive-related circular forms, were recognized and classified in a GIS system.

The morphometric features are consistent with the geological setting of the area, and fit the regional lineaments. In particular, the major structures (N'Zi-Brebo shear zone, the contacts between greenstones and granite-gneiss complex, are imaged. For the Kokumbo-Kimoukro area (fig. 9.3), a high number of E-W trending structures are highlighted; they correspond to through-going faults and trend of some late-kinematics intrusive.

Figure 9.4 shows a comparison with the geological map from Masurel et al. (2022b).

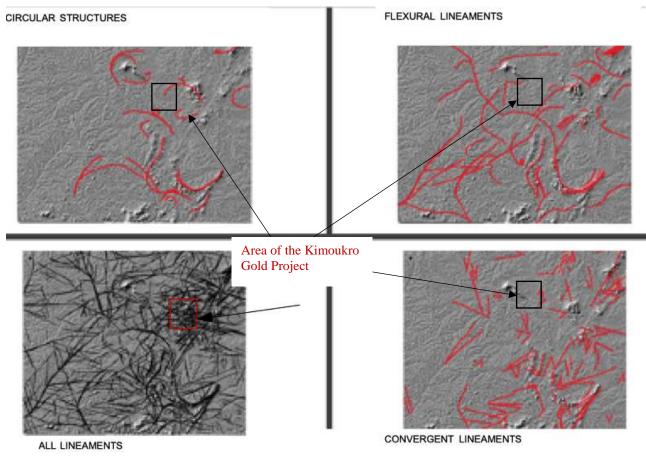
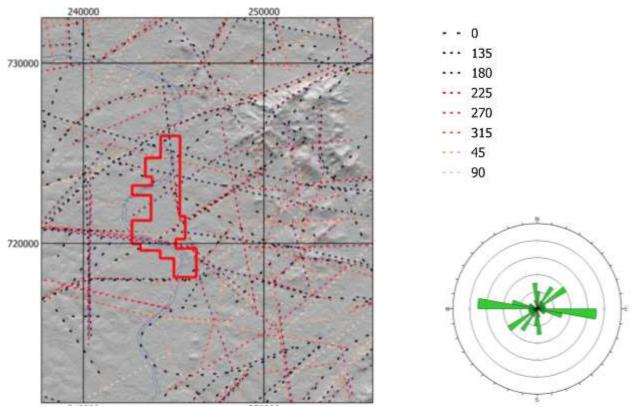




Figure 9–2 - Structural lineaments from DTM – regional view



*Figure 9–3 – Detail of morphometric lineation from different angles in the Project area, and rose alagram of the structural lineaments* 

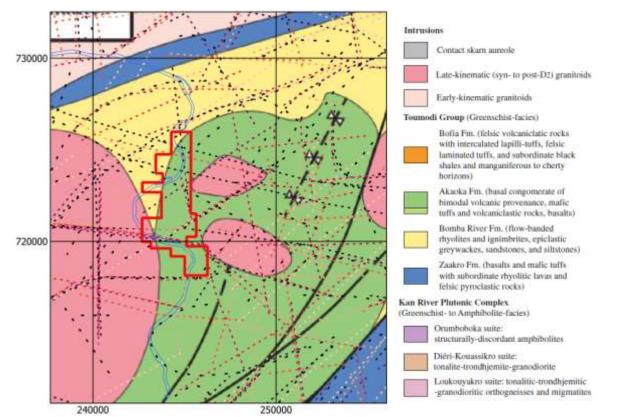



Figure 9–4 - Geological map (modified from Measurel et al., 2022b) with the structural lineaments from DTM.

## 9.1.2 Landsat 8 and Sentinel 2

The Landsat 8 scenes used for the regional study were the following:

| LANDSAT_PRODUCT_ID                       | DATE ACQUIRE | SCENE CENTER TIME |  |  |
|------------------------------------------|--------------|-------------------|--|--|
| LC08_L2SP_196055_20200428_20200820_02_T1 | 2020-04-28   | 10:33:19.9041040Z |  |  |
| LC08_L2SP_196056_20200428_20200820_02_T1 | 2020-04-28   | 10:33:43.8163230Z |  |  |
| LC08_L2SP_197055_20190228_20200829_02_T1 | 2019-02-28   | 10:39:42.4524159Z |  |  |
| LC08_L2SP_197056_20210321_20210401_02_T1 | 2021-03-21   | 10:40:13.9991400Z |  |  |

The Sentinel 2 scenes used to cover the detailed area were the following:

| PRODUCT_ID AND TYPE                | DATE ACQUIRE | SCENE CENTER TIME |
|------------------------------------|--------------|-------------------|
| L1C_T30NTN_A024172_20200207T105758 | 2020-02-07   | 10:42:11.024Z     |
| L2A_T30NTN_A024172_20200207T105758 | 2020-02-07   | 10:42:11.024Z     |

The scenes were preprocessed according to the following operations:

- Conversion from digital values (DN-Digital Number) to reflectance (TOA- Top Of Atmosphere)
- Atmospheric correction
- Pansharpening

With different combinations of RGB color bands of the Landsat 8 images, different areas can be identified:

A, B, E = soils

C = river terraces and meanders

D marks burned spots where artisanal mining is present

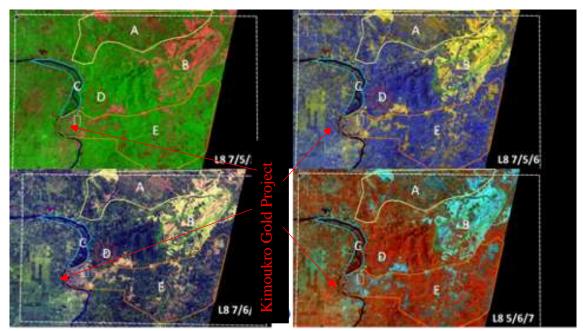



Figure 9–5 – Landsat 8 color composites.

Gold-bearing rock samples and the historical gold findings are highlighted by similar spectral response (small areas in yellow/green) in the color composite L8 7/6/2.

The PCA analysis on the Sentinel 2 image shows that the location of the different spectral responses (Blue/Cyan Vs. Red/purple) is consistent with structural lineaments extracted from DEM

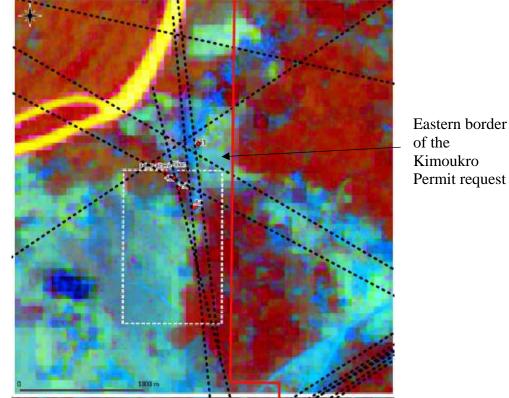



Figure 9–6 – PCA4/PCA3/PCA2 from Sentinel 2. Insights on the Property with the location of the gold bearing rock samples and the structural lineaments from DEM.

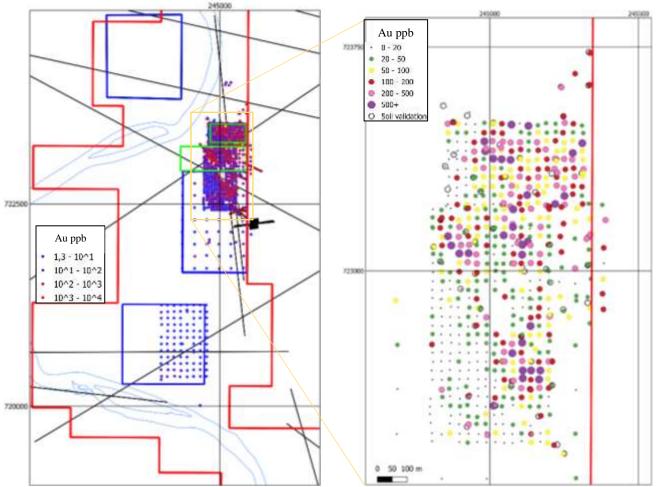
## 9.2 Soil sampling

The soil sampling campaign consisted in systematic sampling using a 150 m spaced grid; the most favorable area was subsequently sampled on a 30 m spaced grid.

A total number of 750 soil samples were collected and covered a total of about 160 ha; three areas have been sampled separately. The northern areas highlighted a broad gold anomaly, the southern one, 50 ha wide, did not produced any significant result. It is worth to mention that almost all the soil samples in the southern area were collected in recent clayey alluvial cover, not favorable for this prospecting method; this means that the lack of results appears to be related to the limits of the method and not necessarily to the lack of mineralized rocks underneath.

The methodology used was documented with pictures and described in an internal correspondence report. The sampling points were recorded by using a handheld GPS, and marked in the field with a flag.

In the author's opinion, the method is acceptable, giving the type of sampling, and the early stage of the project.

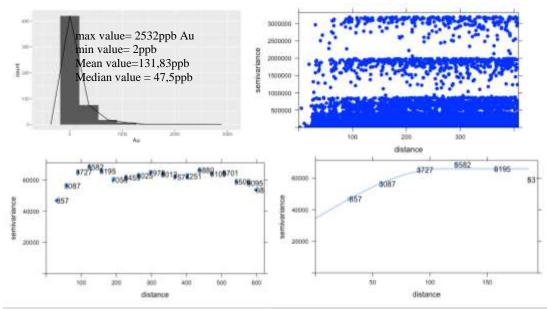

The soil samples are extracted by means of a manual auger drill, depth of sampling was between 0.35 and 1.50 m. Part of the samples have been collected in the area where active artisanal work was in place; in this case, the samples have been then collected in undisturbed ground, avoiding reworked material. In the norther quarter of the sampling grid, soil samples have been collected in virgin ground.

No Qa/QC have been introduced by DBD, so the QC of sample batches only rely on the lab internal QA/QC. Given the limited amount of work done and the early stage of the exploration, the QP opinion is that this is acceptable.

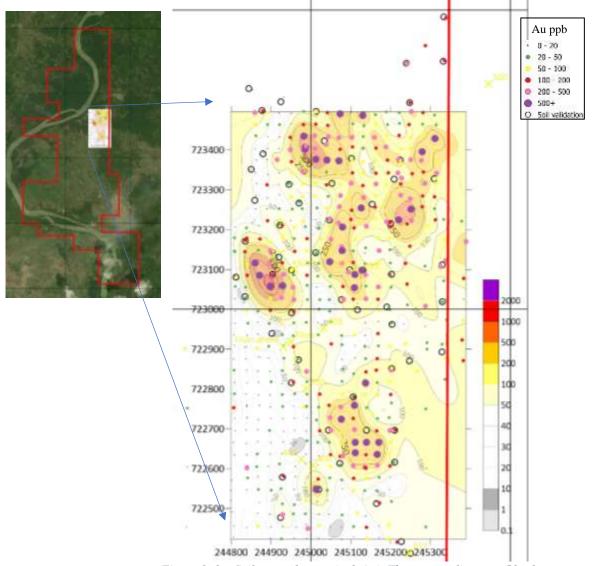
The gold content in the soil samples ranges from 2 to 2500 ppb.

In April 2023, by request of the QP, 64 additional soil samples were collected within the anomaly area. QC samples introduced are two blank samples obtained from barren granite sand, as well as three field duplicates quartered in the field from the parent samples.

The sample assays not only confirmed the previous information with a very good approximation, but also confirmed the continuity of the anomaly outside the previously sampled area.




*Figure* 9–7 - *Extension of the soil sampling. The blue and red rectangles refer to the previous exploration permits. The map on the right shows the samples color-coded by assay received; the validation samples collected in March 2023 are shown.* 


Ordinary kriging interpolator was used to produce a continuous gold anomaly map in the densely sampled area; in order to avoid excessive bias, the exercise was limited to the 30 m grid area.

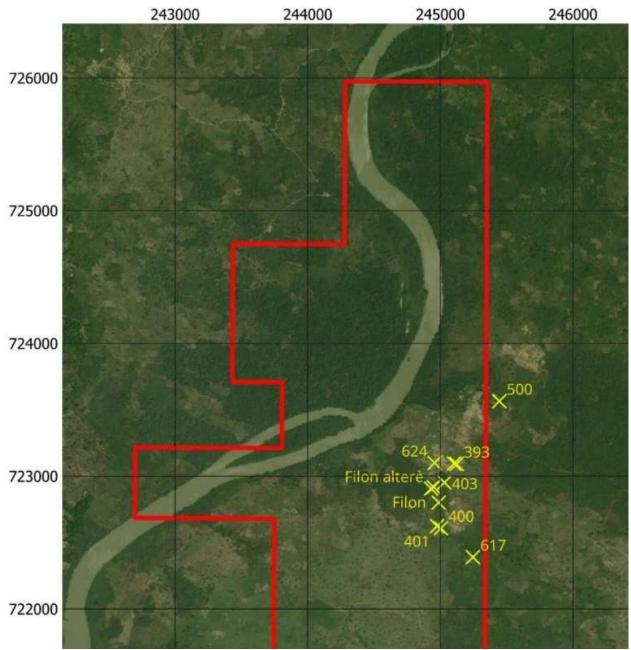
The gold anomalies have elliptical shape with a maximum exceeding 2.000 ppb and wide areas over 100 ppb. The anomalies appear elongated according to the trend of the main structural lineaments identified by the remote sensing imagery, and confirms the historical soil anomaly (refer to fig. 6.6).

The anomaly zone is open to the north side and to the west, while the south edge shows a quick decrease of the soil values, with a NW trend. This trend has similarities with the structure map highlighted by the IP survey, and can be the effect of a depressed area, where colluvial/alluvial cover is present. More data are needed to provide a valid answer.



*Figure 9–8 - descriptive statistics and variography for the soil anomaly map* 




*Figure 9–9 – Soil anomaly map (ppb Au). The contour lines are 50ppb.* 

## 9.3 Rock samples analyses

Selected rock samples have been submitted to laboratory (Bureau Veritas in Abidjan) for multielement and fire assay. They have been also cut and studied in thin sections with both optical and electronic microscope; SEM diffraction analysis was done on selected spots.

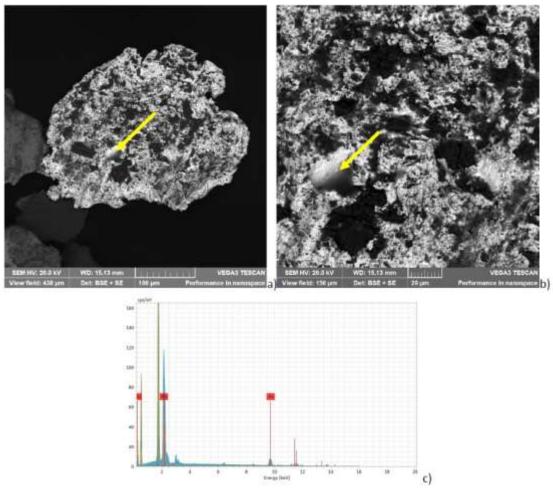
During the site visit in March 2023 the authors sampled additional rocks from the artisanal miners' holes; the samples have been studied in thin section and over binocular microscope, and analyzed by handheld XRF (Bruker's S1 TITAN Handheld XRF Analyzer). The latter provides expeditive semi-quantitative results and it must be highlight that the results obtained are here intended only as a reference for further exploration, but do not provide acceptable analytical data for the purpose of a 43-101 report.

The location of the rock samples is shown in fig. 9.10.



*Figure* 9–10 - *Location of the rock samples collected and mentioned in the text.* 

## 9.3.1 Petrography and SEM study


Petrographic analyses were conducted on 3 rock samples at the University of Siena by specialists (Università di Siena, 2023).

The point 393 marks a 30 m deep shaft actively worked by artisanal miners; several rock samples have been collected from there at all visits at the site, therefore, they represent different depths along the same mineralised structure zone. Optical microscopy and SEM study, as well as Fire assay, have been carried out on these samples as shown in table 9.1.

| Sample code | Туре | Analysis                |
|-------------|------|-------------------------|
| 393         | Pulp | SEM                     |
| 393 bis     | Pulp | SEM                     |
| 393         | Rock | Optical microscope +SEM |
| 393A        | Rock | Optical microscope +SEM |
| 393B        | Rock | Optical microscope +SEM |
| 500         | Rock | Optical microscope +SEM |

Table 9–1 - Rock samples and study completed

The rock pulp of sample 393 was quartered from the material used for fire assay, which reported 28.4 ppm Au. The following SEM images (fig. 9.11) show the presence of a native gold grains associated with quartz. Further evidences of gold are in association with pyrite.



*Figure 9–11 – SEM BSE images and spectrogram showing a native gold grain (20x20µm) associated with quartz on the sample 393 (rock pulp).* 

The spectra on sample 393bis revealed also the presence of Iron, Copper and Lead sulfides, but no gold occurrence.

The sample 393 (rock) is a quartz-mylonite with a S1 schistosity marked by Biotite and Muscovite, deformed in S-C structures by a S2 cleavage indicating an apparent dextral shear.

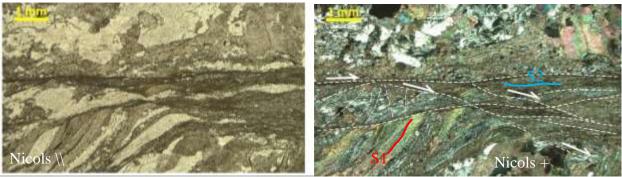
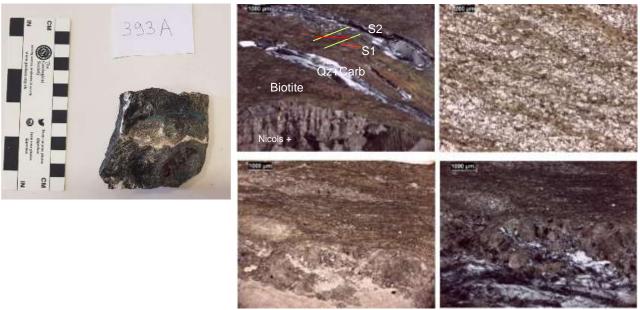




Figure 9–12 - Thin section observed at optical microscope of the qz-mylonite (sample 393 rock)

The sample 393A is a quartz-mylonite with boudined, highly deformed quartz and carbonate veins. A crenulation cleavage, which cuts the main schistosity is also observed. The greenish/brownish domains are made of biotite and white mica, alternates with carbonate, albite and quartz.



*Figure 9–13 - Thin section of the sample 393A observed at optical microscope.* 

Lead and Zinc sulfides were detected on target points analysed by electronic microscope (SEM), along with native gold particles.

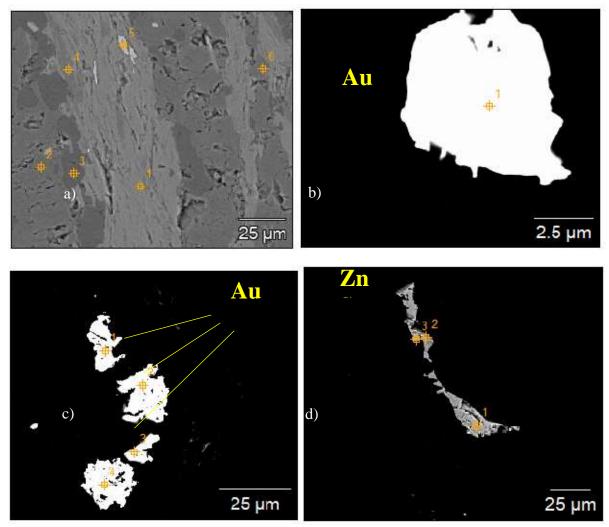
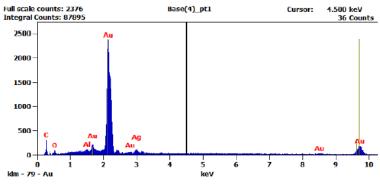




Figure 9–14 - SEM BSE images on sample 393A. Native gold particles (7 to 25 µm) has been detected (in b) and c)).



*Figure 9–15 - EDS spectrum of the gold grain in fig. 9.14c.* 

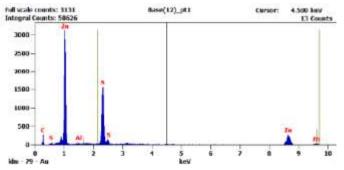
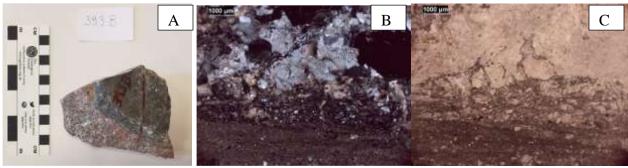
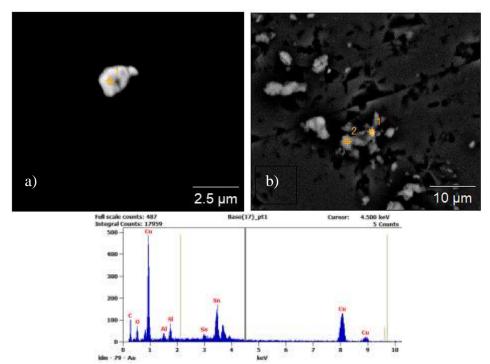




Figure 9–16 - EDS spectrum of the Sphalerite grain in fig. 9.14d.

Sample 393B is at the contact between the quartz-mylonite and the granitoid. The thin section at optical microscope shows the two different domains. The SEM analysis shows the presence of Galena and Sphalerite; no gold was detected in the studied thin section.




*Figure* 9–17 – *Sample 393B; the contact between pinkish granitoid and greenish foliated ?metavolcanoclastic is visible. A: sample with cut line for thin section. B, C: microphotographs, transmitted light, Nicols X, and Nicols //, respectively.* 

The sample 500 is a quartz vein medium to coarse grained with ribbon texture. Very fine-grained quartz recrystallised at the borders of the first-generation quartz crystals. Biotite inclusions in the quartz crystals is folded. Small crystals of native copper and pyrite have been observed by SEM analysis, no gold was detected.



Figure 9–18 - Thin section of sample 500.



*Figure 9–19 - SEM analyses of sample 500. a) native copper grain, b) pyrite grains in quartz matrix.* 

In March 2023, additional rock samples have been collected and a petrographic study was completed by the author. The following table 9.2 provides a description of some studied thin sections.

|                    | Inequigranular, medium-grained allotriomorphic/idiomorphic rock; C.I. 5%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| sample 111         | Main phases: Plagioclase (subtabular, zoned continuously, rhythmically or in sectors,<br>with alterations in Wm+Ep also incipient, especially in the cores); Quartz (anhedral, also<br>as polycrystalline patches, exhibiting wavy extinction and subgrains); Microcline<br>(anhedral, interstitial to other phases, perthitic); Biotite (variously deformed green<br>lamellae, also present in clots, including acicular rutile and zircon undergoing dissolution<br>of granular titanite); rare acicular green amphibole (possibly weakly alkaline, associated<br>with Biotite), and diffuse Alunite. |  |  |
| main phases        | Qtz, Pl, Kfs, Bt, Aln, Cam, Opm, Ttn, Rt, Zrn S: Wm, Ep, Chl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Probable protolith | Bt-Monzogranite ± deformed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| sample <b>626</b>  | Extremely fine-grained, granolepidoblastic rock with "phantom" porphyroclasts pseudomorphed by Quartz-Wm±Ep (formerly Pl)<br>Qtz±Ab, Wm, Ep, Opm, Ox/Idr, Chl                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                    | ultramilonite?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| sample <b>626b</b> | Extremely fine-grained, granolepidoblastic rock with sporadic submillimetric<br>porphyroclasts of Carbonate (pseudomorphs?) occurring individually or in polycrystalline<br>aggregates with Quartz±Feldspar(Ab?)+Opaque minerals+White mica+Chlorite±Epidote<br>(formerly igneous Plagioclase?). S1 deformed by shear. Carbonates often characterized<br>by Oxide minerals at the rims/fractures/cleavages (Ank?)                                                                                                                                                                                       |  |  |
| main phases        | Wm, Qtz, Crb, Opm, Chl, Ep, Pl, Ox/Idr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

| Probable protolith | Phyllite (or igneous dyke?)                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| sample <b>624</b>  | Variable grain size ranging from medium to fine, cataclastic (granoblastic due to recovery). Quartz dominates (polycrystalline with strong recovery, subgrains, and wavy extinction), associated with Plagioclase strongly pseudomorphed by cross-hatched (decussate) polycrystalline assemblages of fine-grained White mica and lamellae of White mica+Opaque minerals (likely secondary over original Biotite). |
| main phases        | Qtz, Pl, Wm, Bt (Relitta), Ttn (su Bt) (sezione brutta con buchi)                                                                                                                                                                                                                                                                                                                                                 |
| Probable protolith | qtz-enriched cataclastic granitoid                                                                                                                                                                                                                                                                                                                                                                                |

Table 9–2 – Petrographic description of selected samples

### 9.3.2 Multielement analyses and Fire assays

Selected rock samples have been assayed using the commercial lab Bureau Veritas, in Abidjan. The following is a summary of the analytical results obtained.

| Sample code  | Туре | Method       | Au ppm |
|--------------|------|--------------|--------|
| Filon        | Rock | Multielement | 7,7    |
| Filon alterè | Rock | Multielement | 6,7    |
| 393          | Rock | FA550        | 28,4   |
| 393_bis      | Rock | FA550        | 29,8   |
| 393_ter      | Rock | FE450        | 5,2    |
| 393_4        | Rock | FA550        | 30,8   |
| 393_waste    | Rock | FE450        | 0,09   |
| 400          | Rock | FE450        | 0,97   |
| 401          | Rock | FE450        | 0,72   |
| 403          | Rock | FE450        | 5,3    |

Table 9–3 - Selected rock sample and gold content, by assay type

### 9.3.3 Hand held XRF readings

Some rock samples have been analyzed by an S1 Titan 600 portable Spectrometer. Table 8.2 shows a summary of the report readings (Au only) for gold-bearing rocks; the single readings are shown in figure 9.20.

| Sample            | N. Of readings | Mean<br>Au ppm | Min<br>Au ppm | Max<br>Au ppm |
|-------------------|----------------|----------------|---------------|---------------|
| 624               | 16             | 7.8            | 0             | 15            |
| 393               | 10             | 9.2            | 0             | 36            |
| 617               | 11             | 9.6            | 0             | 16            |
| 111<br>(Qtz vein) | 5              | 14.4           | 0             | 22            |

Table 9–4 – Summary table - handheld XRF readings on selected rock samples (Au only)

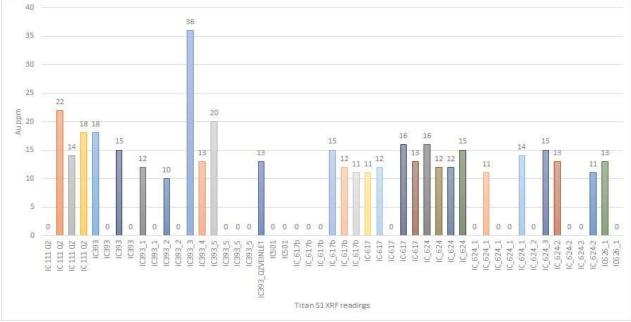



Figure 9-20 - Hand held XRF readings for selected samples

## 9.4 Geophysics

An integrated interpretation of the ground geophysical survey data (IP and Resistivity) acquired by two different Ivorian companies were carried on two different areas of the Kimoukro permit. The data are sourced from the following reports issued for DBD International:

- May 2019, Geosciences (Cd'I) Levé de Polarisation Provoquée/Résistivité effectué a Kimoukro
- <u>December 2019</u> Paolo Costantini Consulting Geophysicist 3CGeo srl (Italy) Dipole-Dipole Resistivity and Induced Polarisation survey at the Kimoukro Prospect
- <u>December 2021</u> Bureau de Recherche Geophysique sarl (Cd'I) Dipole-Dipole Resistivity and Induced Polarisation Survey at the Kimoukro Prospect
- <u>March 2022</u> Trigeo snc (Italy) Pole-Dipole IP/Resistivity Survey at the Kimoukro NE project area. Data Processing & Interpretation (by Paolo Costantini).

The survey is accompanied by a report with details on method, instruments and acquisition parameters. The data are provided either in .pdf, and georeferenced UBC grid format; the QP explored the data provided in Leapfrog 3D modeling software, and check the following statements and interpretation provided by the consultant geophysicist Paolo Costantini.

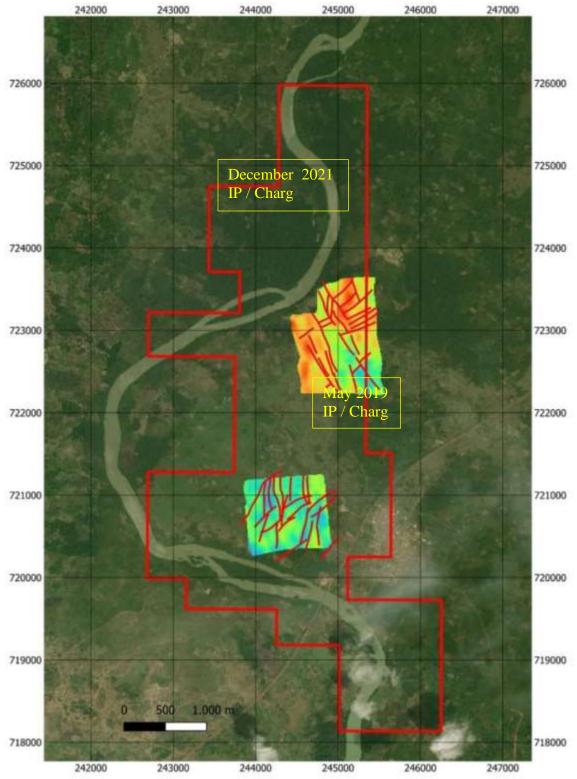



Figure 9–21 - IP/Chargeability survey of 2019 and 2021 on two areas of the Permit.

### 9.4.1 May 2019 IP/Resistivity survey

The IP/Resistivity survey consisted of 10 lines of dipole-dipole profiles, nominally spaced 100 metres apart and roughly oriented N80°E, for a total of 11.5 km of lines covering approximately 0.9 km<sup>2</sup> (figure 9.22). The acquisition parameters were not ideal, and the survey has been re-processed, to try reduce the bias and maximise the results.

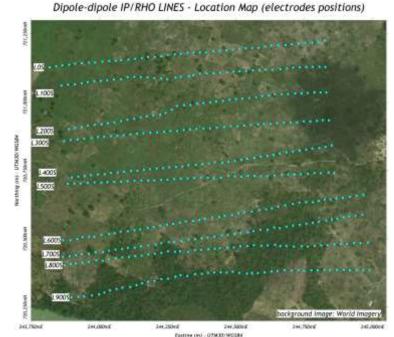



Figure 9–22 – May 2019 survey: IP and Chargeability lines layout and electrode position.

The distributions of Resistivity and Chargeability are coherent and show similar patterns. Figure 9.23 shows the slices of Resistivity and Chargeability cut through the 3D models at two constant depths (50 and 100 m) below ground level. Superimposed are the discontinuities interpreted from the geoelectrical models (striking generally NS) together with the discontinuities and the high-susceptibility bodies (TTG intrusive?). Although the two sets of structures are oriented almost orthogonally, they fit well each other.

From further processing and classification, 5 classes characterised by a specific physical signature are highlighted (fig. 9.24).

- **Classes 0 & 1**: both characterised by low resistivity (<100 Ohm·m) and chargeability, they include the thin transported cover and the first, most altered/argillified horizons of the regolith profile (saprolite and overlying facies). Unit 1 is slightly more chargeable than background, but this can be due to lithological variations more than to the presence of sulphides.
- **Class 2**: medium resistivity (100-500 Ohm·m) and chargeability at background levels. These are the top ~40 metres of the less altered bedrock, possibly including the saprock horizons.
- **Class 3**: This unit, present at the deeper levels, trending with a ~NS strike the western portion of the survey block. It has medium-high resistivity (800-1000 Ohm·m) and no chargeability response. This is likely the signal of the volcano-sedimentary sequence (bedrock).
- Class 4: ca. NS striking bedrock units, similar attitude of Unit 3 but with less continuity and stretching the eastern sector of the block. Because of its high resistivity (>1000 Ohm·m) and Chargeability (>6 mV/V) it could be interpreted as a silicified intrusive or volcano-sedimentary sequence, with sulphides. The magnetic data suggest that at least the central part of this "belt" is occupied by an intrusive body (tonalite/granodiorite?).

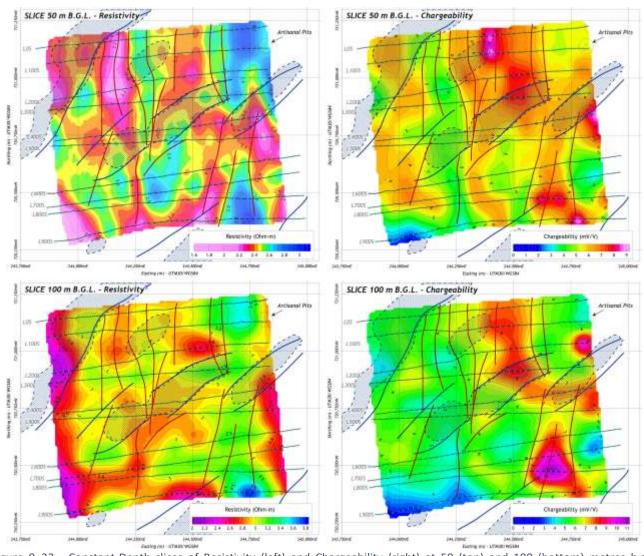



Figure 9–23 - Constant-Depth slices of Resistivity (left) and Chargeability (right) at 50 (top) and 100 (bottom) metres b.g.l. Superimposed the interpreted features: discontinuities, dark red: IP/RHO, dark blue: MAG, shaded areas: interpreted intrusive (TTG?).

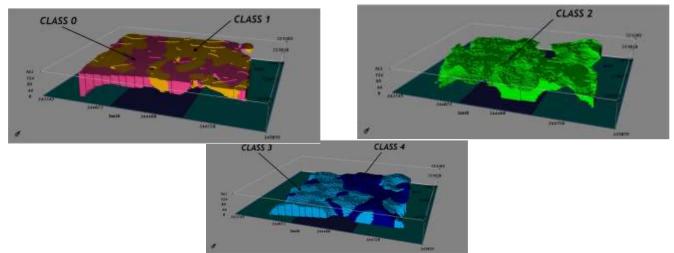



Figure 9–24 - 3D views of the Classified 3D Models.

The resulting interpretation suggests a structural setting with majority of structures N-S oriented (similar to the Bonikro Deposit structures). No direct drill targeting was advised from this survey.

It is advised that these geophysical models be counter-checked with complementary information, such as deeper soil geochemical auger survey (sampling below the transported material), trenches and/or further geophysics.

## 9.4.2 December 2021 IP / Resistivity survey

In November-December 2021, Bureau de Recherche Géophysique Côte d'Ivoire (BRG-CI), on behalf of DBD International, completed a new Ip/Resistivity survey, in the former artisanal exploitation permit. The IP/Resistivity survey consisted of 14 lines of pole-dipole profiles, oriented ca. N90°, with a cross-line spacing of 100 metres and totalling 12.47 km; the areal coverage is approximately 1.3 km<sup>2</sup> (figure 9.24)

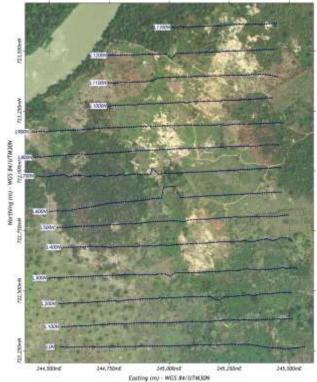
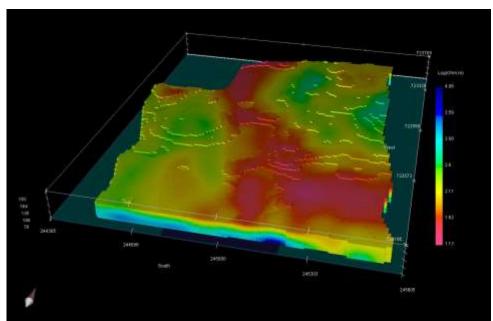




Figure 9–25 – December 2021 survey: Ip and chargeability lines layout and electrode position.

In this case, the resistivity allows for reliable lithological and structural interpretation, and a more confident imaging of the regolith profile. At the bedrock level, two environments can be recognised, a low-resistivity central zone, likely corresponding to a tectonic comminution zone (as known from a shallow hole and the artisanal workings) reasonably within a corridor of volcanosedimentary units. At the borders of this corridor, higher resistivity environments, at least on the eastern side, are likely corresponding to intrusive units (massive, or interleaved with the volcanosediments).

A cut-off value of 125 Ohm.m is used as a passage between the low-resistivity (mottled zone/saprolite/saprock) and the bedrock. Also highlighted is the presence of high resistivity horizons atop of the topographic high W and E of the NNE corridor which, reasonably, correspond to "cuirasse" (lateritic regolith) levels.

The Chargeability model does not reveal a consistent pattern, and the results, with polarisation volumes generally patchy and correlated to high resistivities, cannot be used for reliable target generation.



*Figure* 9–26 - *Three-dimensional view (looking NNW) of the volume distribution of Resistivity (Log10) after inversion (2D), and Kriging (3D).* 

Qualitative analysis of the 3D model and extracted slices, allowed to generate a pattern of interpreted features (discontinuities, underlying intrusive units and lateritic regolith outcrops), as presented in figure 9.28.

Besides the central NNE-trending "Shear" Corridor (obvious target zone), at least three target zones, A, B and C, where follow-up is warranted. Unlike the shear corridor, these three target zones insist on resistive terrains, where the presence of intrusive rocks is likely and where (for rheological reasons) grades and volumes higher than on undisturbed volcano-sedimentary units (ductile) are reasonably to be expected.

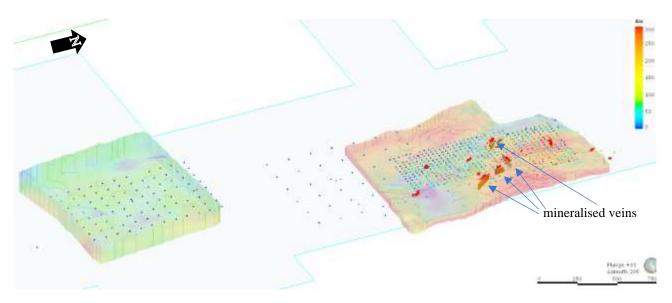
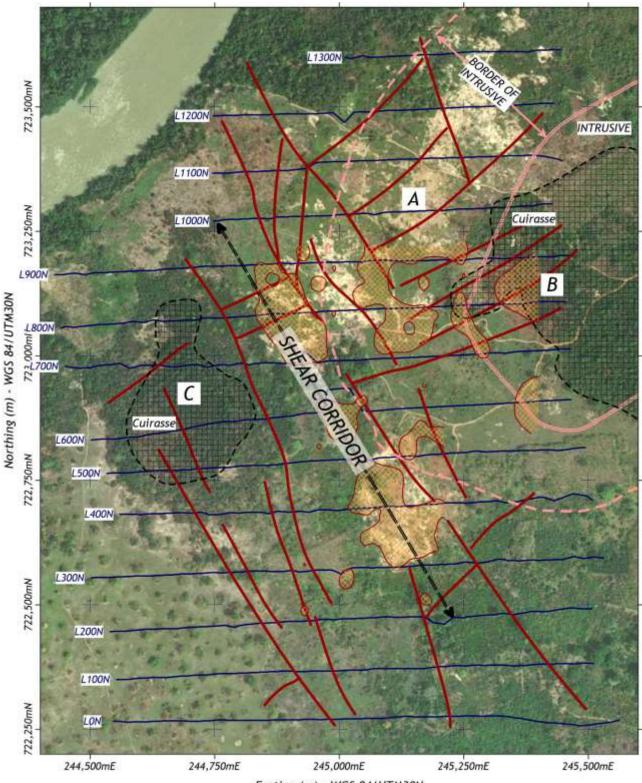




Figure 9–27 - perspective view of the permit boundary and the 3D IP/resistivity grids (colored for resistivity, same color scale). Also shown are soil data (dots color-coded for gold as per legend); the red surfaces are preliminary modelling of the veins known from miner's works.



Easting (m) - WGS 84/UTM30N

Figure 9–28 - Kimoukro Prospect: Interpreted Features, after Costantini: Discontinuities (dark red), Cuirasse (black square dash), Au Soil >100ppb (orange diagonal dash), Intrusive Limits (pink), A,B,C target zones (see text); Background: World Imagery.

## 10. Drilling

To date, no drilling has been completed on the Kimoukro Project.

## 11. Sample Preparation, Analyses and Security

The soil samples have been sent to commercial laboratories using standardised, industry practice precious metal analysis with laboratory QA/QC protocols in place.

The lab used for all the sample preparation and assays, was the Bureau Veritas at Abidjan, which is ISO certified for preparation and assays. The resulting assays are accompanied by certificates.

#### 11.1 Soil samples

The first batch of soil samples, consisting of 53 soil samples, were prepared with method SLBHP 55: Sorting, labelling and boxing samples received as pulps (performed at Abidjan lab). Assay was done with the method AQ252\_EXT: 1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis on 50 g pulp (performed by Vancouver labs).

All the other soil samples followed the same preparation: DY060: Dry at 60°C, and SS80: Dry at 60°C and sieve to -80 mesh fraction. The assay method was FE450: 50g, Fire Assay Solvent Extraction and AAS finish, all performed by the Abidjan laboratory.

#### 11.2 Rock samples

The method used for the rock sample preparation was PRP 70 1kg: Crush, split and pulverize 1kg of sample to 200 mesh, and assay method AQ252\_EXT: 1:1:1 Aqua Regia digestion Ultratrace ICP-MS (performed in the Vancouver lab of Bureau Veritas).

The FE450 method (50g Fire Assay Solvent Extraction and AAS finish, performed in Abidjan) was used for 2 rock samples; samples that exceeded 10.000 ppb were sent internally by Bureau Veritas to the Vancouver lab where the method applied was FA550 (50 g / Fire Assay by digesting an Ag doré bead / gravimetric finish).

#### 11.3 QA/QC

Due to the discontinuous soil sampling completed to date, and the relatively small number of samples, and the spotty rock sampling completed to date on the Kimoukro project, K Mining did not implement any internal QA/QC in its sampling process and has relied on the internal laboratory QA/QC.

The 61 check samples submitted in March 2023 to test the soil geochemistry, adopted an QA/QC program that consisted of inserting one blank every twentieth sample and an in-field duplicate every ten samples taken from the same material as the primary sample. No CRM was used at this time. For best comparison, the samples have been prepared and assayed at the same lab and using the same methods: SS80 and FE450.

#### 11.4 Sample security

Soil samples were collected in rice bags and sealed in the field; durable paper sample tags were put inside the bags; the sample number was also reported in the bag with permanent marker.

The samples were in custody of the field geologist, Roland Amani and of Mr. Benjamin Dje; once the sample number was sufficient, or at the end of a sampling campaign, the samples were transported with

private car directly to the Bureau Veritas lab in Abidjan, for preparation and assay. Grab rock samples have been submitted likewise.

All the rejects the rock and soil samples have been disposed by the lab after assay.

Pulps have been stored in the K Mining office, but are now been disposed. The pulps of the last samples collected are sored in the K Mining office.

#### 11.5 QP comment

In the QP's opinion, the sampling preparation, security and analytical procedures and laboratory QA/QC used at the Kimoukro Project are consistent with generally accepted industry best practices in Birimian terrains of Ivory Coast, and for this style of deposit, in tropical environment.

The QP adopted industry standard use of internal QA/QC including the use of blanks and field duplicates for the 2023 check samples program.

It is recommended that EU Gold keep using the same system for all subsequent sampling campaign, ad also adopt the use of certified reference material in future sampling campaigns.

The sample rejects, or the pulp returned after the assay, should be retained for further reference. Giving the early stage of the project, the lack of the original soil samples (reject or pulps), is not a critical point at this time.

## 12. Data Verification

The QP is relying on this public information and announcements as being accurate and correct. However, the QP has not been able to verify the historical information and therefore the information is not necessarily indicative of the mineralisation on the property that is subject to the technical report. Data verification carried out by the QP include:

- 1 Discussions with K Mining directors, Andrea Grifagni and Benjamin Dje, and with field crew and the field geologist.
- 2 Site visit to the project including collection of 5 check rock samples and 61 check soil samples.
- 3 Auditing of the sample database received from K Mining, check of the lab certificates, accuracy of data handling and presentation.
- 4 Audit of exploration work conducted

For the audit purpose, the QP used, among other methods, QGIS and Leapfrog software, to visualize the surface geology, sample assays, and 3D geophysical data.

#### 12.1 Audit of the database

The sample database for soils and rock chips were provided to the QP in separate spreadsheets, and shapefile points with attributes, and raster images, organised in a GIS project. They were manually checked for issues with coordinates and data entry. Within the soil database, 20 samples were without assay result, however, the accompanying certificate was correctly reporting the list of submitted samples, which wasn't including the incomplete samples. The remaining data was thought to be accurate and suitable for use.

Sample results in Excel databases were check against pdf and spreadsheets original certificates from Bureau Veritas and found to be accurately entered.

#### 12.2 Sample Assay Verification

Five check rock samples were taken from three artisanal shafts and analysed at microscope and handheld XRF. The results of these check samples are commented in 9.3. Although semi- quantitative, the measurement indicates the presence of gold in quartz veins, and as disseminated mineralisation.

64 check soil samples, including QA/QC samples consisting of two field duplicates and two blanks, have been collected and clearly show the presence of gold mineralisation in the system on the Kimoukro Project; the obtained values are in good agreement with the interpolated soil anomaly map, and with the punctual values from previous geochemical campaign.

#### 12.3 Audit of exploration work conducted

The digital data of the Kimoukro Project are stored in a GIS project built in QGis software. Remotesensing data have been checked in a GIS system, as well as the resulting products (i.e. DTM, interpreted lineations and so on). The data are correctly referred to the UTM geographic grid used for the sample database, and the location of all information is thought to be sufficiently accurate and suitable to use. The organization of the informative layers is not ideal as it was still referring to previously separated licenses.

It is recommended, while moving ahead with exploration, to implement a methodology allowing to store metadata more efficiently, possibly conform to the policy suggested by PDAC (2017) recommendation for digital data handling.

The geophysical data reprocessed where provided with geological interpretation and comments. The QP interviewed the author of the reports, Paolo Costantini, an experienced and well renowned geophysicist, to get more confidence on its approach and results.

The petrographic study was check by the QP by using optical microscope and stereoscope for the countersections. The personal observation is in good agreement with the description provided, and there were no important missing details to add to the description provided. It is advised that the petrographic and petrology study should always follow a new rock discovery, and intensified when more rock exposure, or drill core, become available.

#### 12.4 Adequacy of data

Based on the results of the QP's site investigation and data validation efforts, the QP considers the Kimoukro Project sampling data, as contained in the current Project database is according to general industry accepted standards and suitable for use in the reporting of exploration results.

## 13. Mineral Processing and Metallurgical Testing

This section is not applicable to this report.

#### 14. Mineral Resource Estimates

A Current Mineral Resource Estimate has not been declared for the Kimoukro Project.

#### 15. Mineral Reserve Estimates

A Mineral Reserve Estimate has not been declared for the Kimoukro Project.

## 16. Mining Methods

This section is not applicable to this report.

## 17. Recovery Methods

This section is not applicable to this report.

## 18. Project Infrastructure

This section is not applicable to this report.

## **19.** Market Studies and Contracts

This section is not applicable to this report.

# 20. Environmental Studies, Permitting and Social or Community Impact

This section is not applicable to this report.

## 21. Capital and Operating Costs

This section is not applicable to this report.

## 22. Economic Analysis

This section is not applicable to this report.

## 23. Adjacent Properties

A total of 11 small artisanal and semi-industrial exploitation permit requests, exist adjacent to the East, West and South side of the Kimoukro permit boundary, as a result of fractioning of the historical permits in 2019; the size of such permits ranges from 100 ha to 17 ha, with a smaller permit request for 4.5 ha. The permits are owned by small local companies and there is poor track record that the author was able to reconstruct.

The size of these permits is similar to those for which DBD International and Mr. B. Dje obtained the initial exploration permits, now included in the exploration permit request "Kimoukro".

No information is available for these small permits; site visits have proven the widespread presence of artisanal mining activity. The companies owning the permits (or the request of permit) are small local miners or local consortium associate.

The research permit n. 464 "Beriaboukro", covering the south border of the Kimoukro Project, is currently owned by Gold Ivoire Minerals SARL, a subsidiary of Gold Ivoire ltd, and it is an asset of Manas Resources, with major shareholders being Resolute Mining Limited and PDI in joint venture with Turaco Gold ltd. The author was unable to find any record on recent activity completed close to the K Mining permits, other than reported in section 6.2.

In 2021, LacGold Resources SARLU, a fully-owned Ivorian subsidiary of Red Rock Resources PLC, applied (1950DMCIM27/10/2022; refer to fig. 4.5) and recently obtained (13 June 2023 Ministerial Announcement) a research permit for the lease surrounding the Kimoukro property, and including the old Kokumbo mine site. No activity is reported to date.

## 24. Other Relevant Data and Information

There is no more relevant data or information for the Kimoukro Project.

## 25. Interpretation and Conclusions

The Owner, K Mining, has completed initial reconnaissance work in the Kimoukro Project, in the Oumé-Fetekro greenstone belt of central Ivory Coast. Several evidences have been collected of existing gold mineralisation within metavolcanics, metasedimentary and altered biotite-granitoids.

To date, K Mining has completed soil sampling and geophysical surveys, as well as limited geological mapping and rock study, only on a fraction of the permit area. In the central zone of the permit, gold anomaly in soil >100 ppb encompasses 50 ha and it is open to the north and west.

The data yielded from these initial surveys points towards significant potential for orogenic greenstone hosted gold mineralisation, with possible enhanced mineralisation due to intrusion contribution. Altered rock in the laterite and saprolite layers are proven to host gold, from both analytic results, and consolidated artisanal mining. The QP assisted to several washing and panning activity in different sites within the property, and confirm the presence of free gold extracted from saprolite and from eluvial layers. The presence of both disseminated and vein hosted gold mineralisation from initial petrography and petrology work, and analytical results, indicates results representative of the gold deposits found within the hosting prolific greenstone belt, including the mineralisation styles described at the adjacent Kokumbo historic mine area, and possibly with tight similarities to the mineralisation at the Bonikro-Hiré district, 35 Km SW, which are on the same structural and geological context.

The author notes however that considerable work is required by Eu Gold to outline and develop a better understanding of structural or lithological controls and the overall mineralising system before any conclusions can be drawn.

The property is underlain by metavolcanic and metasedimentary rocks which have undergone various phases of both ductile and brittle deformation, as well as multi-phase alteration, well seen at the vein walls, in most of the few samples observed. Intrusives are present and postdate an early foliation and a subsequent brittle-ductile deformation; a mafic mylonite zone is thought to mimic the intrusive contact in the central zone of the Project; thus, the mylonite is interpreted as concentrated deformation zone developed at the expensed of the host rocks (fine-grained, mafic metavolcanoclastics), with kinematics

active during the granitoids emplacement. Mineralised quartz veins are deformed by this mylonite, which in turn shows brittle progressive deformation, and it is crossed by later veinlets. Alteration observed is mainly weak to moderate silicification, accompanied by sericite, white mica, and carbonate alteration (ankerite, calcite).

Mineralised quartz-albite-carbonate veins host sulphides including, by abundance, pyrite (FeS<sub>2</sub>), galena (PbS), sphalerite ((Zn, Fe)S), according to SEM analysis, thought this refers to a limited number of observation only. The presence of chalcopyrite (CuFeS<sub>2</sub>), arsenopyrite (FeAsS) and molybdenite (MoS2), is inferred by optical microscope study and handheld XRF readings.

The association of alteration paragenesis, sulphide content, and the geological context, are indicative and compatible of diffused gold mineralisation.

Considering the above, the QP opinion is that there is potential for an economic gold discovery on the property. However, the author cautions that the Kimoukro permit represents an early-stage exploration program, and considerable work is needed to advance the chances of economic discovery.

#### 25.1 Risks and Uncertainties

The QP is not aware of any significant risks and uncertainties that could be expected to affect the reliability or confidence in the early-stage exploration information discussed herein.

## 26. Recommendations

The initial exploration work completed on the Kimoukro gold project has proven potential for exploration and promising discoveries. In the author's opinion, the results obtained to date grant for follow-up of the exploration work.

EU Gold has commitment in investing in the Property (i.e. the four research permits owned by K Mining), an adequate amount of money within three years, as stated and scheduled in the agreement between the parts.

For the Kimoukro project, which is an early-stage exploration project, the definition of a proper exploration budget has to be done by phases, and the follow-up granted on the base of positive results. In the QP opinion, the available budget is sufficient to design a proper three-years exploration program for the Kimoukro project, including the expenditures for the logistics and camp setup, and grant sufficient exploration budget for reconnaissance in the other permits.

Historical data, as well as artisanal mining activity, are important source of data to be considered for the prospecting and exploration activities; a good mapping of the artisanal mineworks, shafts, and all the collectable information, is absolutely advised.

Key point to focus during the next phases should include not only the surficial expression of the mineralisation, in the supergene enriched layers, but also a good understanding of hypogene mineralisation characteristics. The rocks and the alteration styles present in the area, should be properly identified and characterised. For these purposes, a petrologic multi-scale (micro- to macro) approach is advised. Also, a good structural geology understanding is needed, since the structural control on mineralisation is supposed to be strong.

The structural architecture of the area should be depicted by using magnetic maps integrated with the results of existing and eventually, new geophysical survey data. It is expected that a magnetic survey can provide structural information with good detail; an UAV-borne magnetic survey over the full Project area is ongoing while completing this report.

Soil sampling should be continued with dense grid (at least 50x50 m) north and west of the already clearly identified anomaly zone in the central part of the Project. The exploration should start from the center and expand towards the outside of the anomalies. There is reasonable indication that this anomaly is the on-strike extension of the known mineralisation at the Kokumbo mine.

The comparison between the gold anomaly distribution, known mineralised veins, geophysical interpretation and reference geology, suggest to explore the contact zones at the edges of the greenstones, and around the biotite-muscovite granitoid. For the unexplored areas, a spaced grid up to 100x100 m, should be used for geochemical sampling; infill sampling should be designed upon results, to focus in areas of interest.

Recalling the comments on the geophysical interpretation, and considering the effective presence of a barren surficial cover of recent sediments, confirmed by assay, it is advised that a spaced reconnaissance sampling grid should be repeated, by reaching the in-situ regolith. Auger drilling is a relatively cheap and fast, reliable method for geochemical exploration in this environmental and geologic setting, and it is the method warmed for the next soil geochemical sampling phases. The hand-operated auger tool used so far, is hard to handle at depth greater than 1.0 m, and however, it is limited to a maximum depth of some 2 m, which in several case is not enough to reach the in-situ material. A concurrent way to sample and explore regolith, is the excavation of exploration trenches, which remains one of the best methods to test deeply altered soil profiles, as in the case of the Kimoukro project, and it is warmed to study the prominent gold geochemical anomalies outlined from surface soil sampling.

Once the project is fully permitted, equipment is needed in the ground, to ensure refurbishment of the access road, preparation of the site for the next phase, and a general leveling of transit terrain, as well as for preparing trenches and rig pads for the drilling campaign.

A series of shallow first pass holes are recommended to intersect the surface mineralisation along strike at a subsurface depth of between 25 and 50 meters along the known strike extent of the anomaly zone. Follow up drilling would be based on successful delineation of the zone, targeting deeper holes as warranted by drill results.

If trenching warrants the strong gold-in-soil geochemical anomalies found in the central zone of the project, a First Phase Diamond Drilling program (1,000 meters) is also recommended focusing on the known mineralisation in the central part of the project area.

About the technique of drilling, RC reconnaissance drilling is the most obvious technique to be used. However, the presence of ground water can inhibit the reliability of the RC samples due to crosscontamination due to wet material retained. Alternative techniques exist (i.e., RAB drilling, top hammer drilling); however, the quality of samples is generally poorer than RC, and share the same issue as RC in case of groundwater. Diamond drilling is the most effective but it is also the most expensive drilling method, and is normally used in more advanced stages of exploration. However, diamond drilling with oriented core is necessary (and will be necessary) to define the attitude and spacing of the mineralised structures.

Concerning assay method to be utilised, the recommendation is to use fire assay method for gold, however, a sufficient number of multielement assay will be needed to assess environmental conditions, and to investigate possible pathfinder for the mineralisation.

The exploration program implies the set-up of a camp and related logistics, sample storage facility, logging facility, shop, and so on. One hectare of land at the entrance of the village of Kimoukro can be

rented for the purpose; a pre-agreement is already discussed with the land owner and the chief of the village.

With the above in mind, a two-phased exploration program is designed.

#### 26.1 Proposed exploration program

#### Phase 1 exploration: 0-6 months.

Phase 1 exploration program should focus in continued mapping and sampling of the northern and western area of geochemical anomalies identified during past soil geochemical surveys; auger drilling should be used for geochemical sampling. The project is subdivided in areas according to the exploration priority: 1: expansion of known gold anomaly encompassing the artisanal prospects; and 2: expansion along strike of the mineralisation and untested areas to the west.

The sampling grid will be done in two steps, first spaced and infill, accounting for the initial results. A total of 2000 m of auger drilling is planned for priority 1, producing some 600 samples to be assayed. Priority 2 will start with 1000 m auger drilling program using a wider grid; some 400 samples will be collected.

Trenches will be excavated to better understand the nature of geochemical anomaly and constrain the attitude of the mineralised veins that can be mapped. A total of 350 m of trenches is planned, and some 200 samples will be collected.

Figure 26.1 sketches the proposed priority areas for geochemical sampling, and the indicative location of the trenches.

A more detailed geological map of the Project shall be completed in the time frame, at appropriate scale (1:2000 or greater).

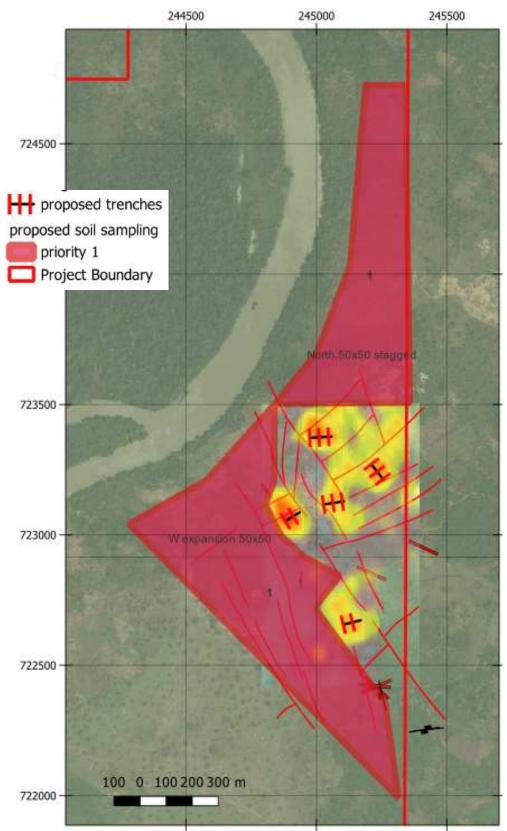
#### Phase 2 exploration: 6-12 months.

Complete reconnaissance geochemistry on additional areas (priority 3 to 6 in fig. 26-3

Initial drilling can commence at the end of Geochem sampling, to test the mineralisation at depth within the solid rock (the estimated thickness of regolite ranges from 3 to 10 m). The initial drilling should be a first-pass with spaced grid, and a second-pass to follow-up the initial results.

Drilling method to be used has to be chosen depending on presence of groundwater, and considering contractors availability.

The drill-hole program should be refined on the base of the results of initial trenching, and ongoing magnetic survey; with the current knowledge, the collar position and geometry of the proposed drill-holes is shown in figure 26.4.


A budget for the proposed initial exploration is provided, including all costs for the described items, according to recent quotation from reliable contractors.

| YEAR 1 – PHASE 1       | PLANNED<br>QUANTITY | COST ESTIMATE       |
|------------------------|---------------------|---------------------|
| AUGER DRILLING         | 1000 m              | CAD 40,000.00       |
| TRENCHING              | 350 ml              | CAD 20,000.00       |
| SOIL ASSAY             | 1200 n.             | CAD 60,000.00       |
| FIRST PASS RC DRILLING | 1000 m              | CAD 180,000.00      |
| ASSAY                  | 800 n.              | CAD 40,000.00       |
|                        |                     |                     |
|                        |                     | TOTAL COST ESTIMATE |
|                        |                     | CAD 340,000.00      |
|                        |                     |                     |
| YEAR 1 – PHASE 2       | PLANNED<br>QUANTITY | COST ESTIMATE       |
| DIAMOND DRILLING       | 1000 m              | CAD 250,000.00      |
| ASSAY                  | 800 n.              | CAD 40,000.00       |
| LOGGING, MODELLING     |                     | CAD 30,000.00       |
|                        |                     |                     |
|                        |                     | TOTAL COST ESTIMATE |
|                        |                     | CAD 320,000.00      |

With the above program, the total expenditure for year 1 is CAD 660,000.

To the phase 1 exploration, the cost for the ongoing UAV magnetic survey should be added, which is CAD 30,000.

In addition to this, admin, logistics, personnel and camp facilities costs are not included.



*Figure 26–1 - Proposed areas and priority for geochemical exploration by auger drilling. In yellow to red, Geochem anomaly Au>20ppb.* 

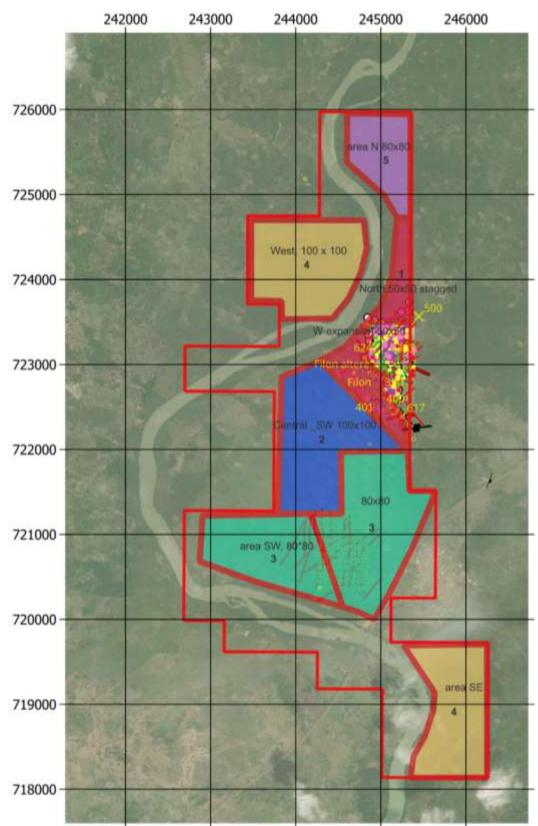



Figure 26–2 – Proposed Geochemical sampling program, by priority 1 to 5.

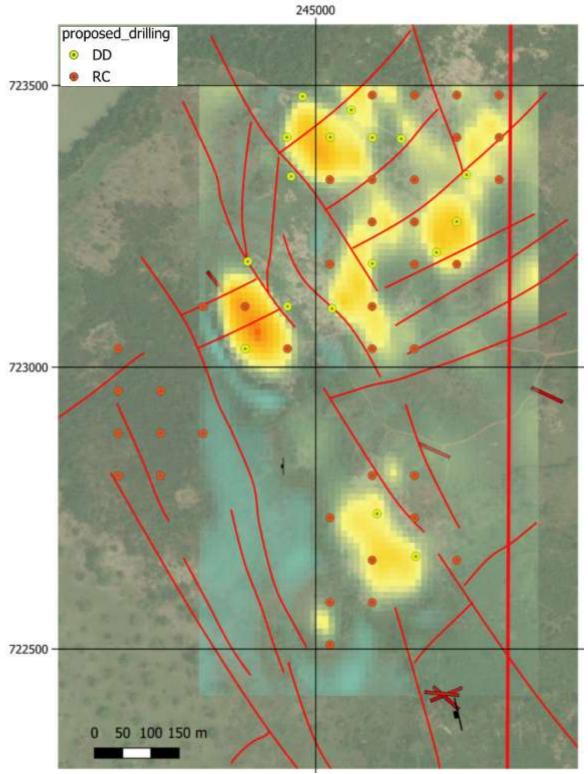



Figure 26–3 - Proposed drilling collar for phase 1 exploration; in the background, the discontinuities inferred from geophysics, and the Au anomaly in soil (yellow to red: >200ppb Au)

This page is intentionally left blank

## 27. References

Ahoussi K.E. et al. (2020). Surface Water Sediments Characterization Using Metallic Trace Elements (MTEs): Case of the Artisanal Gold Mining Sites of Kokumbo (Côte d'Ivoire). J. Env. Protection, v.11 n.9, 649-663.

Bessoles B. (1977). Géologie de l'Afrique. Vol 1: le Craton Ouest Africain. Bur.Rech. Géol. Min. Mem. 88. 402 p.

Billa M., Lescuyer J.L. (2005) - West African GIS Birimian Gold Potential. BRGM/RC-54093- FR, 44p., 11 ill.

Chauveau J.P. (1978). Contribution à la géographie historique de l'or en pays boule (Côte-d'Ivoire) Journal des Africanistes Année 1978, 48-1 pp. 15-69.

Costantini, P. (2019). Dipole-Dipole Resistivity and Induced Polarisation survey at the Kimoukro Prospect (Toumodi, Côte d'Ivoire). 3CGeo srl unpublished Report for DBD International.

Djroh, S., P., (2021). Dipole-Dipole Resistivity and Induced Polarisation Survey at the Kimoukro Prospect (Toumodi, Côte d'Ivoire). Bureau de Recherche Geophysique sarl unpublished Report for DBD International.

Degout D. (1951). Compte rendu de visite à Kokoumbo. vérification de l'existence d'indices de schéelite - s.l, Serv. Mines AOF, 1951, 3p.

Geosciences CD'I (2019) – Unpublished report for DBD International, IP/rho geophysical survey.

Goldfarb R. J., André-Mayer A.S., Jowitt S. M., Mudd G. M. (2017). West Africa: The World's Premier Paleoproterozoic Gold Province\*. Economic Geology Vol. 112 (1), pp. 122-143.

Gouedji G.E.F., Ouattara Z., N'Cho C.E., Glougbe T.A.A.F., Coulibaly Y., Kouamelan A., Kamagate B. (2022). Pétrographie des métabasites aurifères du Kokumbo Bocca et de leurs produits d'altération (Centre de la Côte d'Ivoire). Rev. RAMRES vol. 10 n.2, p. 24-31.

Grenholm, M., Mark, J., Thébaud, N. (2019) - A geodynamic model for the Paleoproterozoic (ca. 2.27-1.96 Ga) Birimian Orogen of the southern West African Craton - Insights into an evolving accretionary-collisional orogenic system. Earth Science Reviews, Volume 192, p. 138-193.

Hayman P.C., Bolz P., Senyah P., Tegan E., S. Denyszyn d, Murphy D.T., Jessell M.W. (2023). Physical and geochemical reconstruction of a 2.35–2.1 Ga volcanic arc (Toumodi Greenstone Belt, Ivory Coast, West Africa). Precambrian Research, 389, 19 P.

Iandelli, N., (2021). Analisi geomatica con dati da telerilevamento di un'area della Costa d'Avorio (Kimoukro). Geofield srl unpublished Report for DBD International.

Knopf, D. (1969) - Inventaire des indices de diamant de Côte d'Ivoire. Fichier. Bibliographie. Carte. Abidjan, SODEMI, rap. n° 246, 1969, 27 p.

Masurel Q., Eglinger A., Thébaud N. et al. (2022a). Paleoproterozoic gold events in the southern West African Craton: review and synopsis. Miner Deposita 57, 513–537.

Masurel Q., Thébaud, N., Allibone, A. et al. (2022b). Intrusion-related affinity and orogenic gold overprint at the Paleoproterozoic Bonikro Au–(Mo) deposit (Côte d'Ivoire, West African Craton). Mineralium Deposita 57, 557–580.

Mobio A., (2019). Rapport sur un levé de Polarisation Provoquée/Résistivité effectué a Kimoukro Cote D'ivoire, Afrique de L'Ouest. Geosciences, unpublished Report for DBD International.

Mortimer J. (1990). Evolution of the Early Proterozoic Toumodi volcanic group and ssociated rocks, Ivory Coast. PhD Thesis, University of Portsmouth, UK. 375 pp.

Mortimer, J. (2016). Paleoproterozoic geology of the Toumodi area, Ivory Coast, 1:100,000. Journal of Maps, 12, S1, 392-400.

N'Guessan N.H., Allialy M.E., Koaudio F.JL.H., Gnanzou A. (2017). Structural Control of Auriferous Mineralization in the Birimian: Case of the Agbahou Deposit in the Region of Divo, Côte d'Ivoire. International Journal of Geosciences, 8, 189-204.

Ouattara Z., Coulibaly Y., Boiron M.C. (2021). Shear-hosted gold mineralization in the Oumé-Fettèkro greenstone belt, Côte d'Ivoire: the Bonikro deposit. Geological Society, London, Special Publications, 502 (1): 147-158.

Nencetti A. (2022). Pole-Dipole IP/Resistivity Survey at the Kimoukro NE project area (Toumodi, Côte d'Ivoire) Data Processing & Interpretation. Trigeo snc, unpublished Report for DBD International.

Prospectors and Developers Association of Canada (2017). Exploration Assessment Data Digital Formats Proposal, Version 1.0: Unpublished document available from the PDAC website at http://www.pdac.ca/docs/default-source/priorities/geosciences/pdac-2017\_exploration-assessmentdata-digital-formats-proposal-final-web.pdf?sfvrsn=a048bc98\_0.

Sonnendrucker P. (1967). Etude de synthèse sur l'or en Côte d'Ivoire. La région aurifère du Baoulé Sud - Abidjan, SODEMI, rap. n° 208, 1967, 89 p.

Sun Xianfang & Rosin, Paul & Martin, Ralph & Langbein, Frank. (2007). Fast and effective featurepreserving mesh denoising. IEEE Trans Vis Comput Graph. IEEE Trans. Vis. Comput. Graph., 13, 925-938.

Sylvain A.K. et al. (2020). Diagnostics of Environmental Risks and Mapping of Surface Water Sensitivity Due to Metal Contamination from Artisanal Gold Mining in Côte d'Ivoire: Case of Angovia, Kokumbo, Hiré and Agbaou. Journal of Geoscience and Environment Protection, 2020, 8, 47-64. Università degli Studi di Siena (2023), prof. C. Viti. Report analitico campioni: 393A, 393B, 500, 501. Unpublished internal report for SPAM srl, 14/01/2023.

Vidal M., Gumiaux, C., Cagnard F., Pouclet A., Ouattara G., Pichon M. (2009). Evolution of a Paleoproterozoic "weak type" orogeny in the West African Craton (Ivory Coast). Tectonophysics 477, 145–159

## 28. Appendix 1 – soil sample results

| Sample        | х      | Y      | Туре      | Au ppb | Assay_Method | Certificate  |
|---------------|--------|--------|-----------|--------|--------------|--------------|
| 8m du PK-29   | 244982 | 722755 | Soil      | 56.6   | AQ252        | ABJ21001308A |
| Gravier rouge | 245266 | 722845 | Soil      | 65.8   | AQ252        | ABJ21001308A |
| PK-01         | 244544 | 722901 | Soil Pulp | 178.4  | AQ252        | ABJ21001308A |
| PK-02         | 244540 | 722756 | Soil Pulp | 9.1    | AQ252        | ABJ21001308A |
| РК-03         | 244540 | 722602 | Soil Pulp | 7.4    | AQ252        | ABJ21001308A |
| РК-04         | 244540 | 722452 | Soil Pulp | 3      | AQ252        | ABJ21001308A |
| PK-05         | 244539 | 722301 | Soil Pulp | 5.3    | AQ252        | ABJ21001308A |
| РК-06         | 244535 | 722153 | Soil Pulp | 1.6    | AQ252        | ABJ21001308A |
| РК-07         | 244538 | 722004 | Soil Pulp | 1.6    | AQ252        | ABJ21001308A |
| РК-08         | 244540 | 721854 | Soil Pulp | 1.3    | AQ252        | ABJ21001308A |
| РК-09         | 244538 | 721704 | Soil Pulp | 6      | AQ252        | ABJ21001308A |
| РК-10         | 244684 | 722901 | Soil Pulp | 50.3   | AQ252        | ABJ21001308A |
| PK-11         | 244690 | 722752 | Soil Pulp | 44.7   | AQ252        | ABJ21001308A |
| РК-12         | 244690 | 722604 | Soil Pulp | 10.6   | AQ252        | ABJ21001308A |
| РК-13         | 244688 | 722453 | Soil Pulp | 5.6    | AQ252        | ABJ21001308A |
| РК-14         | 244691 | 722303 | Soil Pulp | 6.1    | AQ252        | ABJ21001308A |
| PK-15         | 244690 | 722153 | Soil Pulp | 1.7    | AQ252        | ABJ21001308A |
| РК-16         | 244689 | 722002 | Soil Pulp | 1.8    | AQ252        | ABJ21001308A |
| PK-17         | 244692 | 721852 | Soil Pulp | 14     | AQ252        | ABJ21001308A |
| PK-18         | 244689 | 721702 | Soil Pulp | 2.1    | AQ252        | ABJ21001308A |
| РК-19         | 244834 | 722904 | Soil Pulp | 12.5   | AQ252        | ABJ21001308A |
| РК-20         | 244839 | 722759 | Soil Pulp | 12.5   | AQ252        | ABJ21001308A |
| PK-21         | 244839 | 722602 | Soil Pulp | 303    | AQ252        | ABJ21001308A |
| РК-22         | 244838 | 722452 | Soil Pulp | 4.3    | AQ252        | ABJ21001308A |
| РК-23         | 244839 | 722303 | Soil Pulp | 2.6    | AQ252        | ABJ21001308A |
| РК-24         | 244839 | 722153 | Soil Pulp | 2.6    | AQ252        | ABJ21001308A |
| РК-25         | 244841 | 722004 | Soil Pulp | 3.1    | AQ252        | ABJ21001308A |
| РК-26         | 244838 | 721863 | Soil Pulp | 2.4    | AQ252        | ABJ21001308A |
| РК-27         | 244837 | 721704 | •         | 3.2    | AQ252        | ABJ21001308A |
| РК-29         | 244989 | 722753 | Soil Pulp | 13.6   | AQ252        | ABJ21001308A |
| РК-30         | 244985 | 722597 | Soil Pulp | 6752.4 | AQ252        | ABJ21001308A |
| PK-31         | 244992 | 722450 | Soil Pulp | 279    | AQ252        | ABJ21001308A |
| РК-32         | 244990 | 722303 | Soil Pulp | 15.1   | AQ252        | ABJ21001308A |
| РК-33         | 244985 | 722158 | Soil Pulp | 5.5    | AQ252        | ABJ21001308A |
| РК-34         | 244989 | 722003 | Soil Pulp | 5.9    | AQ252        | ABJ21001308A |
| PK-35         | 244991 | 721853 | Soil Pulp | 3.4    | AQ252        | ABJ21001308A |
| РК-36         | 244993 | 721699 | Soil Pulp | 19.9   | AQ252        | ABJ21001308A |
| PK-37         | 245145 | 722904 | Soil Pulp | 9.5    | AQ252        | ABJ21001308A |
| PK-38         | 245139 | 722754 | Soil Pulp | 62.9   | AQ252        | ABJ21001308A |
| РК-39         | 245138 | 722601 | Soil Pulp | 154.6  | AQ252        | ABJ21001308A |
|               |        |        |           |        |              |              |

| РК-40  | 245139 | 722453 | Soil | 151.6 | AQ252 | ABJ21001308A |
|--------|--------|--------|------|-------|-------|--------------|
| PK-41  | 245140 | 722152 | Soil | 40.3  | AQ252 | ABJ21001308A |
| PK-42  | 245136 | 722152 | Soil | 11.2  | AQ252 | ABJ21001308A |
| РК-43  | 245135 | 722004 | Soil | 7.7   | AQ252 | ABJ21001308A |
| РК-44  | 245136 | 721855 | Soil | 6.3   | AQ252 | ABJ21001308A |
| PK-45  | 245139 | 721704 | Soil | 13.5  | AQ252 | ABJ21001308A |
| РК-46  | 245291 | 722900 | Soil | 28.9  | AQ252 | ABJ21001308A |
| PK-47  | 245288 | 722750 | Soil | 47.7  | AQ252 | ABJ21001308A |
| PK-48  | 245290 | 722601 | Soil | 10.6  | AQ252 | ABJ21001308A |
| PK-49  | 245288 | 722454 | Soil | 27.1  | AQ252 | ABJ21001308A |
| PK-50  | 245290 | 722305 | Soil | 29.3  | AQ252 | ABJ21001308A |
| PK-51  | 245286 | 722154 | Soil | 7.7   | AQ252 | ABJ21001308A |
| PK-52  | 245290 | 722005 | Soil | 11.2  | AQ252 | ABJ21001308A |
| PK-53  | 245294 | 721857 | Soil | 42.3  | AQ252 | ABJ21001308A |
| PK-54  | 245290 | 721708 | Soil | 5.4   | AQ252 | ABJ21001308A |
| KO_1   | 244809 | 723206 | Soil | 15    | FE450 | ABJ21002071  |
| KO_10  | 244807 | 722936 | Soil | 11    | FE450 | ABJ21002071  |
| KO_100 | 244900 | 722665 | Soil | 11    | FE450 | ABJ21002071  |
| KO_101 | 244898 | 722637 | Soil | 9     | FE450 | ABJ21002071  |
| KO_102 | 244893 | 722606 | Soil | 13    | FE450 | ABJ21002071  |
| KO_103 | 244900 | 722571 | Soil | 15    | FE450 | ABJ21002071  |
| KO_104 | 244900 | 722546 | Soil | 27    | FE450 | ABJ21002071  |
| KO_105 | 244901 | 722519 | Soil | 15    | FE450 | ABJ21002071  |
| KO_106 | 244897 | 722486 | Soil | 12    | FE450 | ABJ21002071  |
| KO_107 | 244899 | 722454 | Soil | 4     | FE450 | ABJ21002071  |
| KO_108 | 244898 | 722426 | Soil | 11    | FE450 | ABJ21002071  |
| KO_109 | 244928 | 723210 | Soil | 174   | FE450 | ABJ21002071  |
| KO_11  | 244808 | 722909 | Soil | 8     | FE450 | ABJ21002071  |
| KO_110 | 244930 | 723177 | Soil | 85    | FE450 | ABJ21002071  |
| KO_111 | 244930 | 723145 | Soil | 69    | FE450 | ABJ21002071  |
| KO_112 | 244928 | 723116 | Soil | 108   | FE450 | ABJ21002071  |
| KO_113 | 244931 | 723087 | Soil | 223   | FE450 | ABJ21002071  |
| KO_114 | 244929 | 723059 | Soil | 754   | FE450 | ABJ21002071  |
| KO_115 | 244926 | 723029 | Soil | 293   | FE450 | ABJ21002071  |
| KO_117 | 244927 | 722964 | Soil | 61    | FE450 | ABJ21002071  |
| KO_118 | 244928 | 722936 | Soil | 24    | FE450 | ABJ21002071  |
| KO_119 | 244931 | 722909 | Soil | 12    | FE450 | ABJ21002071  |
| KO_12  | 244806 | 722875 | Soil | 10    | FE450 | ABJ21002071  |
| KO_120 | 244932 | 722877 | Soil | 41    | FE450 | ABJ21002071  |
| KO_121 | 244928 | 722846 | Soil | 32    | FE450 | ABJ21002071  |
| KO_122 | 244927 | 722813 | Soil | 9     | FE450 | ABJ21002071  |
| KO_123 | 244928 | 722786 | Soil | 21    | FE450 | ABJ21002071  |
| KO_124 | 244929 | 722756 | Soil | 30    | FE450 | ABJ21002071  |
| KO_125 | 244929 | 722725 | Soil | 6     | FE450 | ABJ21002071  |
|        |        |        |      |       |       |              |

| KO_126 | 244931 | 722693 | Soil | 4   | FE450 | ABJ21002071 |
|--------|--------|--------|------|-----|-------|-------------|
| KO_127 | 244930 | 722667 | Soil | 5   | FE450 | ABJ21002071 |
| KO_128 | 244927 | 722638 | Soil | 12  | FE450 | ABJ21002071 |
| KO_129 | 244921 | 722612 | Soil | 31  | FE450 | ABJ21002071 |
| KO_13  | 244807 | 722847 | Soil | 24  | FE450 | ABJ21002071 |
| KO_130 | 244931 | 722582 | Soil | 131 | FE450 | ABJ21002071 |
| KO_131 | 244925 | 722550 | Soil | 24  | FE450 | ABJ21002071 |
| KO_132 | 244928 | 722512 | Soil | 43  | FE450 | ABJ21002071 |
| KO_133 | 244929 | 722485 | Soil | 243 | FE450 | ABJ21002071 |
| KO_134 | 244929 | 722454 | Soil | 7   | FE450 | ABJ21002071 |
| KO_135 | 244926 | 722424 | Soil | 44  | FE450 | ABJ21002071 |
| KO_136 | 244958 | 723205 | Soil | 55  | FE450 | ABJ21002071 |
| KO_137 | 244958 | 723177 | Soil | 50  | FE450 | ABJ21002071 |
| KO_138 | 244959 | 723145 | Soil | 193 | FE450 | ABJ21002071 |
| KO_139 | 244958 | 723117 | Soil | 71  | FE450 | ABJ21002071 |
| KO_14  | 244808 | 722816 | Soil | 12  | FE450 | ABJ21002071 |
| KO_140 | 244956 | 723086 | Soil | 48  | FE450 | ABJ21002071 |
| KO_141 | 244955 | 723055 | Soil | 324 | FE450 | ABJ21002071 |
| KO_142 | 244957 | 723024 | Soil | 251 | FE450 | ABJ21002071 |
| KO_143 | 244957 | 722994 | Soil | 122 | FE450 | ABJ21002071 |
| KO_144 | 244957 | 722966 | Soil | 43  | FE450 | ABJ21002071 |
| KO_145 | 244956 | 722933 | Soil | 43  | FE450 | ABJ21002071 |
| KO_146 | 244956 | 722906 | Soil | 136 | FE450 | ABJ21002071 |
| KO_147 | 244960 | 722875 | Soil | 86  | FE450 | ABJ21002071 |
| KO_148 | 244958 | 722848 | Soil | 19  | FE450 | ABJ21002071 |
| KO_149 | 244956 | 722817 | Soil | 171 | FE450 | ABJ21002071 |
| KO_15  | 244808 | 722788 | Soil | 22  | FE450 | ABJ21002071 |
| KO_150 | 244959 | 722788 | Soil | 27  | FE450 | ABJ21002071 |
| KO_151 | 244956 | 722757 | Soil | 11  | FE450 | ABJ21002071 |
| KO_152 | 244958 | 722727 | Soil | 9   | FE450 | ABJ21002071 |
| KO_153 | 244959 | 722696 | Soil | 10  | FE450 | ABJ21002071 |
| KO_154 | 244959 | 722667 | Soil | 19  | FE450 | ABJ21002071 |
| KO_155 | 244962 | 722636 | Soil | 14  | FE450 | ABJ21002071 |
| KO_156 | 244961 | 722606 | Soil | 18  | FE450 | ABJ21002071 |
| KO_157 | 244961 | 722580 | Soil | 16  | FE450 | ABJ21002071 |
| KO_158 | 244958 | 722548 | Soil | 15  | FE450 | ABJ21002071 |
| KO_159 | 244958 | 722510 | Soil | 43  | FE450 | ABJ21002071 |
| KO_16  | 244806 | 722753 | Soil | 103 | FE450 | ABJ21002071 |
| KO_160 | 244956 | 722487 | Soil | 24  | FE450 | ABJ21002071 |
| KO_161 | 244963 | 722453 | Soil | 16  | FE450 | ABJ21002071 |
| KO_162 | 244958 | 722426 | Soil | 8   | FE450 | ABJ21002071 |
| KO_163 | 244986 | 723207 | Soil | 32  | FE450 | ABJ21002071 |
| KO_164 | 244990 | 723177 | Soil | 121 | FE450 | ABJ21002071 |
| KO_165 | 244989 | 723147 | Soil | 61  | FE450 | ABJ21002071 |
|        |        |        |      |     |       |             |

| KO_166 | 244991 | 723116 | Soil | 38      | FE450 | ABJ21002071 |
|--------|--------|--------|------|---------|-------|-------------|
| KO_167 | 244990 | 723085 | Soil | 137     | FE450 | ABJ21002071 |
| KO_168 | 244990 | 723060 | Soil | 41      | FE450 | ABJ21002071 |
| KO_169 | 244991 | 723024 | Soil | 30      | FE450 | ABJ21002071 |
| KO_17  | 244808 | 722726 | Soil | 19      | FE450 | ABJ21002071 |
| KO_170 | 244990 | 722998 | Soil | 86      | FE450 | ABJ21002071 |
| KO_171 | 244988 | 722967 | Soil | 40      | FE450 | ABJ21002071 |
| KO_175 | 244989 | 722844 | Soil | 250     | FE450 | ABJ21002071 |
| KO_176 | 244990 | 722818 | Soil | 21      | FE450 | ABJ21002071 |
| KO_177 | 244990 | 722787 | Soil | 30      | FE450 | ABJ21002071 |
| KO_178 | 244989 | 722757 | Soil | 21      | FE450 | ABJ21002071 |
| KO_179 | 244990 | 722727 | Soil | 11      | FE450 | ABJ21002071 |
| KO_18  | 244810 | 722695 | Soil | 9       | FE450 | ABJ21002071 |
| KO_180 | 244988 | 722695 | Soil | 16      | FE450 | ABJ21002071 |
| KO_181 | 244990 | 722670 | Soil | 26      | FE450 | ABJ21002071 |
| KO_182 | 244987 | 722637 | Soil | 17      | FE450 | ABJ21002071 |
| KO_183 | 244986 | 722613 | Soil | 13      | FE450 | ABJ21002071 |
| KO_184 | 244992 | 722578 | Soil | 9       | FE450 | ABJ21002071 |
| KO_185 | 244987 | 722544 | Soil | 16      | FE450 | ABJ21002071 |
| KO_186 | 244987 | 722520 | Soil | 54      | FE450 | ABJ21002071 |
| KO_187 | 244986 | 722487 | Soil | 42      | FE450 | ABJ21002071 |
| KO_188 | 244988 | 722460 | Soil | 16      | FE450 | ABJ21002071 |
| KO_189 | 244989 | 722425 | Soil | 17      | FE450 | ABJ21002071 |
| КО_19  | 244805 | 722666 | Soil | 5       | FE450 | ABJ21002071 |
| KO_190 | 245019 | 723203 | Soil | 32      | FE450 | ABJ21002071 |
| KO_191 | 245024 | 723176 | Soil | 67      | FE450 | ABJ21002071 |
| KO_192 | 245018 | 723145 | Soil | 39      | FE450 | ABJ21002071 |
| KO_193 | 245019 | 723115 | Soil | 41      | FE450 | ABJ21002071 |
| KO_194 | 245017 | 723083 | Soil | 28      | FE450 | ABJ21002071 |
| KO_195 | 245014 | 723055 | Soil | 19      | FE450 | ABJ21002071 |
| KO_196 | 245022 | 723024 | Soil | 24      | FE450 | ABJ21002071 |
| KO_197 | 245020 | 723000 | Soil | 23      | FE450 | ABJ21002071 |
| KO_198 | 245018 | 722966 | Soil | 13      | FE450 | ABJ21002071 |
| KO_199 | 245018 | 722936 | Soil | 35      | FE450 | ABJ21002071 |
| КО_2   | 244808 | 723179 | Soil | 27      | FE450 | ABJ21002071 |
| KO_20  | 244808 | 722635 | Soil | 5       | FE450 | ABJ21002071 |
| KO_21  | 244809 | 722609 | Soil | missing |       |             |
| KO_22  | 244801 | 722571 | Soil | 12      | FE450 | ABJ21002071 |
| КО_23  | 244799 | 722545 | Soil | 5       | FE450 | ABJ21002071 |
| КО_24  | 244799 | 722520 | Soil | 20      | FE450 | ABJ21002071 |
| ко_25  | 244802 | 722491 | Soil | 6       | FE450 | ABJ21002071 |
| KO_26  | 244806 | 722456 | Soil | 2       | FE450 | ABJ21002071 |
| КО_27  | 244806 | 722429 | Soil | 2       | FE450 | ABJ21002071 |
| КО_28  | 244838 | 723204 | Soil | 37      | FE450 | ABJ21002071 |
|        |        |        |      |         |       |             |

| KO_29      | 244839 | 723178 | Soil | 185  | FE450 | ABJ21002071 |
|------------|--------|--------|------|------|-------|-------------|
| KO_3       | 244808 | 723146 | Soil | 24   | FE450 | ABJ21002071 |
| KO_30      | 244834 | 723144 | Soil | 113  | FE450 | ABJ21002071 |
| KO_31      | 244841 | 723113 | Soil | 90   | FE450 | ABJ21002071 |
| KO_32      | 244840 | 723085 | Soil | 198  | FE450 | ABJ21002071 |
| KO_33      | 244836 | 723055 | Soil | 50   | FE450 | ABJ21002071 |
| KO_34      | 244840 | 723027 | Soil | 32   | FE450 | ABJ21002071 |
| KO_35      | 244838 | 722997 | Soil | 61   | FE450 | ABJ21002071 |
| KO_36      | 244842 | 722965 | Soil | 24   | FE450 | ABJ21002071 |
| KO_37      | 244840 | 722934 | Soil | 16   | FE450 | ABJ21002071 |
| KO_38      | 244839 | 722906 | Soil | 11   | FE450 | ABJ21002071 |
| КО_39      | 244836 | 722875 | Soil | 11   | FE450 | ABJ21002071 |
| КО_4       | 244809 | 723144 | Soil | 30   | FE450 | ABJ21002071 |
| KO_40      | 244839 | 722847 | Soil | 5    | FE450 | ABJ21002071 |
| KO_41      | 244840 | 722815 | Soil | 6    | FE450 | ABJ21002071 |
| KO_42      | 244837 | 722787 | Soil | 6    | FE450 | ABJ21002071 |
| KO_43      | 244839 | 722756 | Soil | 6    | FE450 | ABJ21002071 |
| KO_44      | 244839 | 722728 | Soil | 7    | FE450 | ABJ21002071 |
| KO_45      | 244837 | 722697 | Soil | 8    | FE450 | ABJ21002071 |
| KO_46      | 244838 | 722664 | Soil | 17   | FE450 | ABJ21002071 |
| KO_47      | 244839 | 722635 | Soil | 6    | FE450 | ABJ21002071 |
| KO_48      | 244841 | 722607 | Soil | 5    | FE450 | ABJ21002071 |
| KO_49      | 244841 | 722577 | Soil | 24   | FE450 | ABJ21002071 |
| KO_5       | 244808 | 723083 | Soil | 18   | FE450 | ABJ21002071 |
| KO_50      | 244839 | 722547 | Soil | 12   | FE450 | ABJ21002071 |
| KO_55      | 244869 | 723209 | Soil | 19   | FE450 | ABJ21002071 |
| KO_56      | 244872 | 723176 | Soil | 173  | FE450 | ABJ21002071 |
| KO_57      | 244868 | 723148 | Soil | 33   | FE450 | ABJ21002071 |
| KO_58      | 244860 | 723116 | Soil | 2001 | FE450 | ABJ21002071 |
| KO_59      | 244871 | 723085 | Soil | 698  | FE450 | ABJ21002071 |
| КО_6       | 244810 | 723057 | Soil | 31   | FE450 | ABJ21002071 |
| KO_60      | 244871 | 722058 | Soil | 63   | FE450 | ABJ21002071 |
| KO_61      | 244869 | 722025 | Soil | 22   | FE450 | ABJ21002071 |
| KO_62      | 244867 | 722995 | Soil | 47   | FE450 | ABJ21002071 |
| KO_63      | 244866 | 722967 | Soil | 19   | FE450 | ABJ21002071 |
| KO_64      | 244867 | 722938 | Soil | 12   | FE450 | ABJ21002071 |
| KO_65      | 244865 | 722903 | Soil | 65   | FE450 | ABJ21002071 |
| KO_66      | 244870 | 722880 | Soil | 13   | FE450 | ABJ21002071 |
| _<br>КО_67 | 244867 | 722845 | Soil | 10   | FE450 | ABJ21002071 |
| _<br>КО_68 | 244868 | 722817 | Soil | 16   | FE450 | ABJ21002071 |
| <br>КО_69  | 244868 | 722785 | Soil | 8    | FE450 | ABJ21002071 |
| _<br>КО_7  | 244809 | 723026 | Soil | 7    | FE450 | ABJ21002071 |
| _<br>КО_70 | 244871 | 722759 | Soil | 4    | FE450 | ABJ21002071 |
| _<br>KO_71 | 244868 | 722723 | Soil | 11   | FE450 | ABJ21002071 |
| _          |        |        |      |      |       |             |

| KO_72     | 244866 | 722698 | Soil | 6    | FE450 | ABJ21002071 |
|-----------|--------|--------|------|------|-------|-------------|
| KO_73     | 244866 | 722668 | Soil | 7    | FE450 | ABJ21002071 |
| KO_74     | 244865 | 722637 | Soil | 22   | FE450 | ABJ21002071 |
| KO_75     | 244864 | 722605 | Soil | 23   | FE450 | ABJ21002071 |
| KO_76     | 244867 | 722580 | Soil | 14   | FE450 | ABJ21002071 |
| KO_77     | 244868 | 722548 | Soil | 41   | FE450 | ABJ21002071 |
| KO_78     | 244870 | 722515 | Soil | 13   | FE450 | ABJ21002071 |
| KO_79     | 244866 | 722488 | Soil | 9    | FE450 | ABJ21002071 |
| КО_8      | 244810 | 722995 | Soil | 15   | FE450 | ABJ21002071 |
| KO_80     | 244866 | 722456 | Soil | 73   | FE450 | ABJ21002071 |
| KO_83     | 244896 | 723170 | Soil | 59   | FE450 | ABJ21002071 |
| КО_84     | 244898 | 723147 | Soil | 401  | FE450 | ABJ21002071 |
| KO_85     | 244896 | 723114 | Soil | 397  | FE450 | ABJ21002071 |
| KO_87     | 244898 | 723058 | Soil | 2532 | FE450 | ABJ21002071 |
| KO_88     | 244898 | 723027 | Soil | 97   | FE450 | ABJ21002071 |
| ко_89     | 244898 | 722997 | Soil | 182  | FE450 | ABJ21002071 |
| КО_9      | 244809 | 722965 | Soil | 19   | FE450 | ABJ21002071 |
| ко_90     | 244895 | 722964 | Soil | 40   | FE450 | ABJ21002071 |
| KO_91     | 244895 | 722935 | Soil | 10   | FE450 | ABJ21002071 |
| KO_92     | 244894 | 722907 | Soil | 48   | FE450 | ABJ21002071 |
| КО_93     | 244894 | 722878 | Soil | 16   | FE450 | ABJ21002071 |
| КО_94     | 244897 | 722844 | Soil | 10   | FE450 | ABJ21002071 |
| KO_95     | 244900 | 722818 | Soil | 30   | FE450 | ABJ21002071 |
| КО_96     | 244897 | 722785 | Soil | 7    | FE450 | ABJ21002071 |
| KO_97     | 244898 | 722755 | Soil | 17   | FE450 | ABJ21002071 |
| KO_98     | 244899 | 722726 | Soil | 7    | FE450 | ABJ21002071 |
| KO_99     | 244896 | 722696 | Soil | 29   | FE450 | ABJ21002071 |
| 25 HA 404 | 245333 | 723225 | Soil | 22   | FE450 | ABJ21002072 |
| 25 HA 405 | 245336 | 723174 | Soil | 84   | FE450 | ABJ21002072 |
| 25 HA 406 | 245338 | 723122 | Soil | 266  | FE450 | ABJ21002072 |
| 25 HA 407 | 245333 | 723071 | Soil | 35   | FE450 | ABJ21002072 |
| 25 HA 408 | 245336 | 723023 | Soil | 23   | FE450 | ABJ21002072 |
| 25 HA 409 | 245340 | 722973 | Soil | 46   | FE450 | ABJ21002072 |
| 25 HA 410 | 245336 | 722824 | Soil | 27   | FE450 | ABJ21002072 |
| 25 HA 411 | 245336 | 722876 | Soil | 74   | FE450 | ABJ21002072 |
| 25 HA 415 | 245378 | 723221 | Soil | 48   | FE450 | ABJ21002072 |
| 25 HA 416 | 245389 | 723170 | Soil | 381  | FE450 | ABJ21002072 |
| 25 HA 417 | 245385 | 722123 | Soil | 2    | FE450 | ABJ21002072 |
| 25 HA 418 | 245383 | 723077 | Soil | 125  | FE450 | ABJ21002072 |
| 25 HA 419 | 245383 | 723025 | Soil | 18   | FE450 | ABJ21002072 |
| 25 HA 420 | 245381 | 722972 | Soil | 76   | FE450 | ABJ21002072 |
| 25 HA 421 | 245379 | 722923 | Soil | 161  | FE450 | ABJ21002072 |
| 25 HA 422 | 245382 | 722871 | Soil | 167  | FE450 | ABJ21002072 |
| 25 HA 456 | 245241 | 723063 | Soil | 146  | FE450 | ABJ21002072 |
|           |        |        |      |      |       |             |

| 25 HA 457 | 245242 | 723011 | Soil | 34      | FE450 | ABJ21002072 |
|-----------|--------|--------|------|---------|-------|-------------|
| 25 HA 458 | 245248 | 723158 | Soil | 105     | FE450 | ABJ21002072 |
| 25 HA 459 | 245237 | 723115 | Soil | 127     | FE450 | ABJ21002072 |
| 25 HA 460 | 245241 | 723214 | Soil | 128     | FE450 | ABJ21002072 |
| 25 HA 461 | 245237 | 722914 | Soil | 62      | FE450 | ABJ21002072 |
| 25 HA 462 | 245287 | 723008 | Soil | 208     | FE450 | ABJ21002072 |
| 25 HA 463 | 245287 | 722957 | Soil | 14      | FE450 | ABJ21002072 |
| 25 HA 464 | 245286 | 723108 | Soil | 44      | FE450 | ABJ21002072 |
| 25 HA 465 | 245287 | 723661 | Soil | 115     | FE450 | ABJ21002072 |
| 25 HA 466 | 245293 | 723209 | Soil | 65      | FE450 | ABJ21002072 |
| 25 HA 467 | 245287 | 723165 | Soil | 62      | FE450 | ABJ21002072 |
| 25 HA 468 | 245233 | 722963 | Soil | 16      | FE450 | ABJ21002072 |
| 25 HA 469 | 245291 | 722916 | Soil | 25      | FE450 | ABJ21002072 |
| KO_204    | 245022 | 722787 | Soil | 113     | FE450 | ABJ21002072 |
| KO_205    | 245019 | 722754 | Soil | 34      | FE450 | ABJ21002072 |
| KO_206    | 245014 | 722722 | Soil | 23      | FE450 | ABJ21002072 |
| KO_207    | 245022 | 722695 | Soil | 154     | FE450 | ABJ21002072 |
| KO_208    | 245017 | 722666 | Soil | 26      | FE450 | ABJ21002072 |
| KO_209    | 245020 | 722632 | Soil | 15      | FE450 | ABJ21002072 |
| KO_210    | 245017 | 722609 | Soil | 11      | FE450 | ABJ21002072 |
| KO_211    | 245018 | 722574 | Soil | 101     | FE450 | ABJ21002072 |
| KO_212    | 245013 | 722548 | Soil | 898     | FE450 | ABJ21002072 |
| KO_213    | 245015 | 722517 | Soil | 13      | FE450 | ABJ21002072 |
| KO_214    | 245020 | 722486 | Soil | 8       | FE450 | ABJ21002072 |
| KO_215    | 245020 | 722457 | Soil | 68      | FE450 | ABJ21002072 |
| KO_216    | 245019 | 722426 | Soil | 14      | FE450 | ABJ21002072 |
| KO_217    | 245047 | 723207 | Soil | 71      | FE450 | ABJ21002072 |
| KO_218    | 245050 | 723175 | Soil | 240     | FE450 | ABJ21002072 |
| KO_219    | 245049 | 723145 | Soil | 63      | FE450 | ABJ21002072 |
| KO_220    | 245047 | 723119 | Soil | 1322    | FE450 | ABJ21002072 |
| KO_221    | 245048 | 723083 | Soil | 34      | FE450 | ABJ21002072 |
| KO_222    | 245048 | 723057 | Soil | 22      | FE450 | ABJ21002072 |
| KO_223    | 245046 | 723024 | Soil | 25      | FE450 | ABJ21002072 |
| KO_224    | 245047 | 722995 | Soil | 22      | FE450 | ABJ21002072 |
| KO_225    | 245050 | 722968 | Soil | 24      | FE450 | ABJ21002072 |
| KO_226    | 245046 | 722928 | Soil | missing |       |             |
| KO_227    | 245051 | 722913 | Soil | 153     | FE450 | ABJ21002072 |
| KO_232    | 245045 | 722759 | Soil | 124     | FE450 | ABJ21002072 |
| KO_233    | 245048 | 722728 | Soil | 467     | FE450 | ABJ21002072 |
| KO_234    | 245050 | 722696 | Soil | 231     | FE450 | ABJ21002072 |
| KO_235    | 245046 | 722666 | Soil | 41      | FE450 | ABJ21002072 |
| KO_236    | 245049 | 722635 | Soil | 196     | FE450 | ABJ21002072 |
| KO_237    | 245049 | 722606 | Soil | 85      | FE450 | ABJ21002072 |
| KO_238    | 245047 | 722577 | Soil | 44      | FE450 | ABJ21002072 |
|           |        |        |      |         |       |             |

| KO_239   | 245041 | 722546 | Soil | 21  | FE450 | ABJ21002072 |
|----------|--------|--------|------|-----|-------|-------------|
| KO_240   | 245042 | 722520 | Soil | 7   | FE450 | ABJ21002072 |
| KO_241   | 245045 | 722486 | Soil | 7   | FE450 | ABJ21002072 |
| KO_242   | 245048 | 722454 | Soil | 4   | FE450 | ABJ21002072 |
| KO_243   | 245049 | 722423 | Soil | 5   | FE450 | ABJ21002072 |
| KO_244   | 245079 | 723206 | Soil | 662 | FE450 | ABJ21002072 |
| KO_245   | 245077 | 723157 | Soil | 423 | FE450 | ABJ21002072 |
| KO_246   | 245078 | 723147 | Soil | 912 | FE450 | ABJ21002072 |
| KO_247   | 245077 | 723115 | Soil | 259 | FE450 | ABJ21002072 |
| KO_248   | 245077 | 723084 | Soil | 6   | FE450 | ABJ21002072 |
| KO_249   | 245080 | 723057 | Soil | 119 | FE450 | ABJ21002072 |
| KO_250   | 245082 | 723025 | Soil | 246 | FE450 | ABJ21002072 |
| KO_251   | 245078 | 723998 | Soil | 39  | FE450 | ABJ21002072 |
| KO_252   | 245067 | 723970 | Soil | 15  | FE450 | ABJ21002072 |
| KO_253   | 245077 | 722934 | Soil | 32  | FE450 | ABJ21002072 |
| KO_254   | 245078 | 722911 | Soil | 21  | FE450 | ABJ21002072 |
| KO_255   | 245078 | 722874 | Soil | 18  | FE450 | ABJ21002072 |
| KO_256   | 245080 | 722850 | Soil | 48  | FE450 | ABJ21002072 |
| KO_257   | 245078 | 722819 | Soil | 46  | FE450 | ABJ21002072 |
| KO_258   | 245079 | 722785 | Soil | 91  | FE450 | ABJ21002072 |
| KO_259   | 245075 | 722755 | Soil | 236 | FE450 | ABJ21002072 |
| KO_260   | 245076 | 722724 | Soil | 629 | FE450 | ABJ21002072 |
| KO_261   | 245078 | 722692 | Soil | 69  | FE450 | ABJ21002072 |
| KO_262   | 245079 | 722665 | Soil | 97  | FE450 | ABJ21002072 |
| KO_263   | 245080 | 722632 | Soil | 216 | FE450 | ABJ21002072 |
| KO_264   | 245072 | 722609 | Soil | 36  | FE450 | ABJ21002072 |
| KO_265   | 245077 | 722572 | Soil | 41  | FE450 | ABJ21002072 |
| KO_266   | 245079 | 722550 | Soil | 17  | FE450 | ABJ21002072 |
| KO_268#1 | 245078 | 722484 | Soil | 30  | FE450 | ABJ21002072 |
| KO_269   | 245076 | 722453 | Soil | 5   | FE450 | ABJ21002072 |
| KO_270   | 245077 | 722423 | Soil | 6   | FE450 | ABJ21002072 |
| KO_271   | 245108 | 723204 | Soil | 185 | FE450 | ABJ21002072 |
| KO_272   | 245111 | 723175 | Soil | 54  | FE450 | ABJ21002072 |
| KO_273   | 245106 | 723146 | Soil | 33  | FE450 | ABJ21002072 |
| KO_274   | 245106 | 723117 | Soil | 111 | FE450 | ABJ21002072 |
| KO_275   | 245110 | 723087 | Soil | 628 | FE450 | ABJ21002072 |
| KO_276   | 245109 | 723054 | Soil | 502 | FE450 | ABJ21002072 |
| КО_277   | 245106 | 723025 | Soil | 183 | FE450 | ABJ21002072 |
| KO_278   | 245105 | 723000 | Soil | 73  | FE450 | ABJ21002072 |
| KO_279   | 245113 | 723964 | Soil | 17  | FE450 | ABJ21002072 |
| KO_280   | 245108 | 722935 | Soil | 83  | FE450 | ABJ21002072 |
| KO_281   | 245111 | 722909 | Soil | 19  | FE450 | ABJ21002072 |
| KO_282   | 245111 | 722878 | Soil | 20  | FE450 | ABJ21002072 |
| KO_283   | 245107 | 722838 | Soil | 30  | FE450 | ABJ21002072 |
|          |        |        |      |     |       |             |

| KO_285      | 245109 | 722786 | Soil | 26      | FE450 | ABJ21002072 |
|-------------|--------|--------|------|---------|-------|-------------|
| KO_286      | 245109 | 722759 | Soil | 701     | FE450 | ABJ21002072 |
| KO_287      | 245106 | 722726 | Soil | 200     | FE450 | ABJ21002072 |
| KO_288      | 245109 | 722698 | Soil | 402     | FE450 | ABJ21002072 |
| KO_289      | 245111 | 722666 | Soil | 590     | FE450 | ABJ21002072 |
| KO_290      | 245111 | 722640 | Soil | 643     | FE450 | ABJ21002072 |
| KO_291      | 245106 | 722607 | Soil | 297     | FE450 | ABJ21002072 |
| KO_292      | 245107 | 722576 | Soil | 103     | FE450 | ABJ21002072 |
| KO_293      | 245107 | 722546 | Soil | 53      | FE450 | ABJ21002072 |
| KO_295      | 245116 | 722489 | Soil | 62      | FE450 | ABJ21002072 |
| KO_296      | 245107 | 722455 | Soil | 25      | FE450 | ABJ21002072 |
| KO_297      | 245107 | 722429 | Soil | 16      | FE450 | ABJ21002072 |
| KO_298      | 245139 | 723208 | Soil | 288     | FE450 | ABJ21002072 |
| ко_299      | 245137 | 723154 | Soil | 32      | FE450 | ABJ21002072 |
| ко_300      | 245135 | 723141 | Soil | 18      | FE450 | ABJ21002072 |
| KO_301      | 245135 | 723114 | Soil | 40      | FE450 | ABJ21002072 |
| КО_302      | 245137 | 723086 | Soil | 255     | FE450 | ABJ21002072 |
| KO_303      | 245138 | 723058 | Soil | 33      | FE450 | ABJ21002072 |
| КО_304      | 245138 | 723026 | Soil | 209     | FE450 | ABJ21002072 |
| KO_305      | 245137 | 723998 | Soil | 45      | FE450 | ABJ21002072 |
| KO_306      | 245136 | 722966 | Soil | 19      | FE450 | ABJ21002072 |
| KO_307      | 245136 | 722934 | Soil | 15      | FE450 | ABJ21002072 |
| KO_308      | 245135 | 722907 | Soil | 42      | FE450 | ABJ21002072 |
| KO_309      | 245137 | 722876 | Soil | 48      | FE450 | ABJ21002072 |
| KO_310      | 245138 | 722843 | Soil | 102     | FE450 | ABJ21002072 |
| KO_311      | 245137 | 722815 | Soil | 552     | FE450 | ABJ21002072 |
| KO_312      | 245135 | 722785 | Soil | 70      | FE450 | ABJ21002072 |
| KO_313      | 245140 | 722753 | Soil | 35      | FE450 | ABJ21002072 |
| KO_314      | 245137 | 722698 | Soil | 67      | FE450 | ABJ21002072 |
| KO_315      | 245139 | 722666 | Soil | 702     | FE450 | ABJ21002072 |
| KO_316      | 245138 | 722635 | Soil | 186     | FE450 | ABJ21002072 |
| KO_317      | 245135 | 722604 | Soil | 217     | FE450 | ABJ21002072 |
| KO_318      | 245136 | 722603 | Soil | 122     | FE450 | ABJ21002072 |
| KO_319      | 245139 | 722576 | Soil | 81      | FE450 | ABJ21002072 |
| KO_320      | 245135 | 722545 | Soil | 29      | FE450 | ABJ21002072 |
| KO_322      | 245137 | 722481 | Soil | 12      | FE450 | ABJ21002072 |
| KO_323      | 245141 | 722453 | Soil | 14      | FE450 | ABJ21002072 |
| <br>КО_324  | 245140 | 722425 | Soil | 56      | FE450 | ABJ21002072 |
| _<br>КО_325 | 245169 | 723207 | Soil | missing |       |             |
| _<br>КО_326 | 245168 | 723178 | Soil | 61      | FE450 | ABJ21002072 |
| <br>КО_327  | 245171 | 723147 | Soil | 226     | FE450 | ABJ21002072 |
| <br>КО328   | 245169 | 723118 | Soil | 86      | FE450 | ABJ21002072 |
| <br>КО330   | 245169 | 723056 | Soil | 312     | FE450 | ABJ21002072 |
| _<br>КО_331 | 245168 | 723025 | Soil | 107     | FE450 | ABJ21002072 |
| —           |        |        |      |         |       |             |

| КО_332 | 245170 | 722998 | Soil | 52      | FE450 | ABJ21002072 |
|--------|--------|--------|------|---------|-------|-------------|
| KO_333 | 245169 | 722969 | Soil | 20      | FE450 | ABJ21002072 |
| KO_334 | 245168 | 722939 | Soil | 131     | FE450 | ABJ21002072 |
| KO_335 | 245169 | 722908 | Soil | 21      | FE450 | ABJ21002072 |
| KO_336 | 245166 | 722876 | Soil | 101     | FE450 | ABJ21002072 |
| KO_337 | 245164 | 722847 | Soil | 146     | FE450 | ABJ21002072 |
| KO_338 | 245166 | 722816 | Soil | 27      | FE450 | ABJ21002072 |
| KO_339 | 245167 | 722785 | Soil | 68      | FE450 | ABJ21002072 |
| KO_341 | 245167 | 722726 | Soil | 23      | FE450 | ABJ21002072 |
| KO_342 | 245165 | 722695 | Soil | 148     | FE450 | ABJ21002072 |
| KO_343 | 245170 | 722666 | Soil | 570     | FE450 | ABJ21002072 |
| KO_344 | 245166 | 722636 | Soil | 566     | FE450 | ABJ21002072 |
| KO_345 | 245167 | 722608 | Soil | 214     | FE450 | ABJ21002072 |
| KO_346 | 245171 | 722578 | Soil | 33      | FE450 | ABJ21002072 |
| KO_347 | 245165 | 722545 | Soil | 30      | FE450 | ABJ21002072 |
| KO_348 | 245172 | 722514 | Soil | 194     | FE450 | ABJ21002072 |
| KO_350 | 245170 | 722456 | Soil | 14      | FE450 | ABJ21002072 |
| KO_351 | 245170 | 722427 | Soil | 8       | FE450 | ABJ21002072 |
| KO_352 | 245200 | 723207 | Soil | 124     | FE450 | ABJ21002072 |
| KO_353 | 245197 | 723178 | Soil | 57      | FE450 | ABJ21002072 |
| KO_354 | 245198 | 723149 | Soil | 26      | FE450 | ABJ21002072 |
| KO_355 | 245199 | 723116 | Soil | 30      | FE450 | ABJ21002072 |
| KO_356 | 245197 | 723087 | Soil | 111     | FE450 | ABJ21002072 |
| KO_357 | 245201 | 723055 | Soil | 45      | FE450 | ABJ21002072 |
| KO_358 | 245199 | 722027 | Soil | 18      | FE450 | ABJ21002072 |
| KO_359 | 245198 | 722999 | Soil | 34      | FE450 | ABJ21002072 |
| KO_360 | 245201 | 722965 | Soil | 41      | FE450 | ABJ21002072 |
| KO_361 | 245195 | 722935 | Soil | missing |       |             |
| KO_362 | 245198 | 722907 | Soil | 94      | FE450 | ABJ21002072 |
| KO_363 | 245198 | 722873 | Soil | 18      | FE450 | ABJ21002072 |
| KO_364 | 245201 | 722847 | Soil | 276     | FE450 | ABJ21002072 |
| KO_365 | 245198 | 722818 | Soil | 74      | FE450 | ABJ21002072 |
| KO_366 | 245200 | 722786 | Soil | 106     | FE450 | ABJ21002072 |
| KO_367 | 245202 | 722765 | Soil | 34      | FE450 | ABJ21002072 |
| KO_368 | 245196 | 722728 | Soil | 49      | FE450 | ABJ21002072 |
| KO_369 | 245198 | 722696 | Soil | 238     | FE450 | ABJ21002072 |
| KO_370 | 245199 | 722666 | Soil | 86      | FE450 | ABJ21002072 |
| KO_371 | 245196 | 722638 | Soil | 58      | FE450 | ABJ21002072 |
| KO_372 | 245198 | 722607 | Soil | 113     | FE450 | ABJ21002072 |
| KO_373 | 245198 | 722578 | Soil | 6       | FE450 | ABJ21002072 |
| KO_374 | 245197 | 722547 | Soil | 10      | FE450 | ABJ21002072 |
| KO_375 | 245202 | 722518 | Soil | 42      | FE450 | ABJ21002072 |
| KO_377 | 245195 | 722459 | Soil | 88      | FE450 | ABJ21002072 |
| KO_378 | 245195 | 722423 | Soil | 86      | FE450 | ABJ21002072 |
|        |        |        |      |         |       |             |

| K0466_01 | 244281 | 721251 | Soil | 2  | FE450 | ABJ21003463 |
|----------|--------|--------|------|----|-------|-------------|
| K0466_02 | 244277 | 721163 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_03 | 244277 | 721089 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_04 | 244283 | 721010 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_05 | 244277 | 720331 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_06 | 244278 | 720855 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_07 | 244279 | 720770 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_08 | 244277 | 720688 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_09 | 244278 | 720609 | Soil | 3  | FE450 | ABJ21003463 |
| K0466_10 | 244274 | 720528 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_11 | 244275 | 720453 | Soil | 3  | FE450 | ABJ21003463 |
| K0466_12 | 244281 | 720371 | Soil | 75 | FE450 | ABJ21003463 |
| K0466_13 | 244353 | 721250 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_14 | 244358 | 721168 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_15 | 244359 | 721091 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_16 | 244360 | 721009 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_17 | 244358 | 720930 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_18 | 244356 | 720850 | Soil | 4  | FE450 | ABJ21003463 |
| K0466_19 | 244349 | 720771 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_20 | 244357 | 720690 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_21 | 244360 | 720607 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_22 | 244357 | 720527 | Soil | 4  | FE450 | ABJ21003463 |
| K0466_23 | 244362 | 720451 | Soil | 4  | FE450 | ABJ21003463 |
| K0466_24 | 244351 | 720368 | Soil | 18 | FE450 | ABJ21003463 |
| K0466_25 | 244436 | 721247 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_26 | 244437 | 721170 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_27 | 244435 | 721091 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_28 | 244441 | 721009 | Soil | 7  | FE450 | ABJ21003463 |
| K0466_29 | 244437 | 720931 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_30 | 244440 | 720848 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_31 | 244436 | 720769 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_32 | 244438 | 720690 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_33 | 244430 | 720611 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_34 | 244438 | 720529 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_35 | 244435 | 720451 | Soil | 18 | FE450 | ABJ21003463 |
| K0466_36 | 244442 | 720373 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_37 | 244519 | 721251 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_38 | 244515 | 721173 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_39 | 244516 | 721090 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_40 | 244517 | 721008 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_41 | 244518 | 720931 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_42 | 244517 | 720852 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_43 | 244518 | 720773 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_44 | 244520 | 720688 | Soil | 2  | FE450 | ABJ21003463 |
|          |        |        |      |    |       |             |

| K0466_45     | 244517 | 720611 | Soil | 9  | FE450 | ABJ21003463 |
|--------------|--------|--------|------|----|-------|-------------|
| K0466_46     | 244518 | 720527 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_47     | 244522 | 720442 | Soil | 3  | FE450 | ABJ21003463 |
| K0466_48     | 244510 | 720365 | Soil | 11 | FE450 | ABJ21003463 |
| K0466_49     | 244596 | 721252 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_50     | 244598 | 721169 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_51     | 244595 | 721190 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_52     | 244597 | 721012 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_53     | 244598 | 720932 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_54     | 244597 | 720850 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_55     | 244539 | 720771 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_56     | 244598 | 720688 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_57     | 244596 | 720609 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_58     | 244594 | 720532 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_59     | 244599 | 720443 | Soil | 7  | FE450 | ABJ21003463 |
| K0466_60     | 244597 | 720364 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_61     | 244678 | 721252 | Soil | 4  | FE450 | ABJ21003463 |
| K0466_62     | 244677 | 721170 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_63     | 244680 | 721088 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_64     | 244678 | 721010 | Soil | 6  | FE450 | ABJ21003463 |
| K0466_65     | 244679 | 720931 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_66     | 244678 | 720852 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_67     | 244678 | 720772 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_68     | 244678 | 720692 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_69     | 244680 | 720670 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_70     | 244678 | 720529 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_71     | 244678 | 720452 | Soil | 6  | FE450 | ABJ21003463 |
| K0466_72     | 244676 | 720370 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_73     | 244757 | 721251 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_74     | 244759 | 721171 | Soil | 4  | FE450 | ABJ21003463 |
| K0466_75     | 244757 | 721091 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_76     | 244757 | 720011 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_77     | 244756 | 720929 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_78     | 244755 | 720851 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_79     | 244760 | 720772 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_80     | 244759 | 720690 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_81     | 244760 | 720605 | Soil | 3  | FE450 | ABJ21003463 |
| K0466_82     | 244758 | 720528 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_83     | 244758 | 720453 | Soil | 11 | FE450 | ABJ21003463 |
| K0466_84     | 244760 | 720370 | Soil | 2  | FE450 | ABJ21003463 |
| <br>K0466_85 | 244833 | 721251 | Soil | 3  | FE450 | ABJ21003463 |
| K0466_86     | 244839 | 721167 | Soil | 2  | FE450 | ABJ21003463 |
| K0466_87     | 244838 | 721092 | Soil | 10 | FE450 | ABJ21003463 |
| K0466_88     | 244836 | 721009 | Soil | 2  | FE450 | ABJ21003463 |
|              |        |        |      |    |       |             |

| K0466_89                                                                                                                                                                                                              | 244841                                                                                                                                                                                     | 720932                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| K0466_90                                                                                                                                                                                                              | 244837                                                                                                                                                                                     | 720851                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| K0466_91                                                                                                                                                                                                              | 244837                                                                                                                                                                                     | 720767                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 4                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| K0466_92                                                                                                                                                                                                              | 244841                                                                                                                                                                                     | 720691                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| K0466_93                                                                                                                                                                                                              | 244839                                                                                                                                                                                     | 720613                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| K0466_94                                                                                                                                                                                                              | 244834                                                                                                                                                                                     | 720530                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| K0466_95                                                                                                                                                                                                              | 244837                                                                                                                                                                                     | 720450                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| K0466_96                                                                                                                                                                                                              | 244835                                                                                                                                                                                     | 720370                                                                                                                                                                                     | Soil                                                                                                                                                                                                                      | 2                                                                                                                 | FE450                                                                                                                                                 |     | ABJ21003463                                                                                                                                                                                                                                                                                                                          |             |
| SV -01                                                                                                                                                                                                                | 245224                                                                                                                                                                                     | 723369                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 93                                                                                                                | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-02                                                                                                                                                                                                                 | 245315                                                                                                                                                                                     | 723328                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 82                                                                                                                | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-03                                                                                                                                                                                                                 | 245227                                                                                                                                                                                     | 723329                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 230                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-04                                                                                                                                                                                                                 | 245248                                                                                                                                                                                     | 723518                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 114                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-05                                                                                                                                                                                                                 | 245241                                                                                                                                                                                     | 723615                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 234                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-06                                                                                                                                                                                                                 | 245241                                                                                                                                                                                     | 723615                                                                                                                                                                                     | DUP of SV-                                                                                                                                                                                                                | -05                                                                                                               |                                                                                                                                                       | 265 | FE450                                                                                                                                                                                                                                                                                                                                | ABJ23001575 |
| SV-07                                                                                                                                                                                                                 | 245335                                                                                                                                                                                     | 723624                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 184                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-08                                                                                                                                                                                                                 | 245338                                                                                                                                                                                     | 723730                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 190                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-09                                                                                                                                                                                                                 | 245200                                                                                                                                                                                     | 723084                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 41                                                                                                                | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-10                                                                                                                                                                                                                 | 245128                                                                                                                                                                                     | 723098                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 1944                                                                                                              | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-11                                                                                                                                                                                                                 | 245047                                                                                                                                                                                     | 723227                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 205                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-12                                                                                                                                                                                                                 | 245094                                                                                                                                                                                     | 723093                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 394                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-13                                                                                                                                                                                                                 | 245012                                                                                                                                                                                     | 723140                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 40                                                                                                                | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-14                                                                                                                                                                                                                 | 244950                                                                                                                                                                                     | 723098                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 93                                                                                                                | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                                            | •                                                                                                                                                                                                                         |                                                                                                                   |                                                                                                                                                       |     |                                                                                                                                                                                                                                                                                                                                      |             |
| SV-15                                                                                                                                                                                                                 | 244903                                                                                                                                                                                     | 723085                                                                                                                                                                                     | Soil Pulp                                                                                                                                                                                                                 | 223                                                                                                               | FE450                                                                                                                                                 |     | ABJ23001575                                                                                                                                                                                                                                                                                                                          |             |
| SV-15<br>SV-15b                                                                                                                                                                                                       | 244903<br>244903                                                                                                                                                                           | 723085<br>723085                                                                                                                                                                           | Soil Pulp<br>DUP of SV-                                                                                                                                                                                                   | 223<br>-15                                                                                                        | FE450                                                                                                                                                 | 178 | ABJ23001575<br>FE450                                                                                                                                                                                                                                                                                                                 | ABJ23001575 |
|                                                                                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                                            | DUP of SV-                                                                                                                                                                                                                |                                                                                                                   | FE450<br>FE450                                                                                                                                        | 178 |                                                                                                                                                                                                                                                                                                                                      | ABJ23001575 |
| SV-15b                                                                                                                                                                                                                | 244903                                                                                                                                                                                     | 723085                                                                                                                                                                                     | -                                                                                                                                                                                                                         | -15<br>59                                                                                                         |                                                                                                                                                       | 178 | FE450                                                                                                                                                                                                                                                                                                                                | ABJ23001575 |
| SV-15b<br>SV-17                                                                                                                                                                                                       | 244903<br>244813                                                                                                                                                                           | 723085<br>723080<br>723172                                                                                                                                                                 | DUP of SV<br>Soil Pulp<br>Soil Pulp                                                                                                                                                                                       | -15                                                                                                               | FE450                                                                                                                                                 | 178 | FE450<br>ABJ23001575                                                                                                                                                                                                                                                                                                                 | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18                                                                                                                                                                                              | 244903<br>244813<br>244835                                                                                                                                                                 | 723085<br>723080                                                                                                                                                                           | DUP of SV<br>Soil Pulp                                                                                                                                                                                                    | -15<br>59<br>160                                                                                                  | FE450<br>FE450                                                                                                                                        | 178 | FE450<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                                                                                                  | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19                                                                                                                                                                                     | 244903<br>244813<br>244835<br>245182                                                                                                                                                       | 723085<br>723080<br>723172<br>723263                                                                                                                                                       | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                                                                             | -15<br>59<br>160<br>96<br>13                                                                                      | FE450<br>FE450<br>FE450                                                                                                                               | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                                                                                   | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19<br>SV-20<br>SV-21                                                                                                                                                                   | 244903<br>244813<br>244835<br>245182<br>244904<br>244915                                                                                                                                   | 723085<br>723080<br>723172<br>723263<br>722938<br>723128                                                                                                                                   | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                                                                | -15<br>59<br>160<br>96<br>13<br>46                                                                                | FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                                                             | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                                                     | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19<br>SV-20                                                                                                                                                                            | 244903<br>244813<br>244835<br>245182<br>244904<br>244915                                                                                                                                   | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317                                                                                                                         | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                                                                | -15<br>59<br>160<br>96<br>13<br>46<br>52                                                                          | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                                                    | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                                                                    | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19<br>SV-20<br>SV-21<br>SV-22                                                                                                                                                          | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052                                                                                                                         | 723085<br>723080<br>723172<br>723263<br>722938<br>723128                                                                                                                                   | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                                                   | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43                                                                    | FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                                                             | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                                                     | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19<br>SV-20<br>SV-21<br>SV-22<br>SV-23                                                                                                                                                 | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919                                                                                                               | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212                                                                                                               | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                                      | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33                                                              | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                                  | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                                      | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-24                                                                                                                                        | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835                                                                                                     | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029                                                                                                     | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                         | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18                                                        | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                                           | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                                       | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-20<br>SV-21<br>SV-22<br>SV-22<br>SV-23<br>SV-24<br>SV-25                                                                                                                      | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117                                                                                           | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015                                                                                           | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                                                         | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21                                                  | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                         | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                                        | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-26<br>SV-27                                                                                                             | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206                                                                       | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004                                                                                 | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                               | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16                                            | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                                | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                                         | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-19<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-25<br>SV-25<br>SV-26<br>SV-27<br>SV-28                                                                         | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078                                                             | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>723022                                                             | DUP of SV<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp<br>Soil Pulp                                                                               | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71                                      | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                                       | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                                          | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-25<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30                                                                         | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078<br>244946                                                   | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>723022<br>722815                                                   | DUP of SV<br>Soil Pulp<br>Soil Pulp                                                     | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18                                | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                              | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                                           | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-25<br>SV-26<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30<br>SV-31                                                       | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078<br>244946<br>244951                                         | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>723022<br>722815<br>72292                                          | DUP of SV<br>Soil Pulp<br>Soil Pulp                                                     | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18<br>87                          | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                                     | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                                            | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-25<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30<br>SV-31<br>SV-32                                                       | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078<br>244946<br>244951<br>244967                               | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>723022<br>722815<br>72292<br>722874                                | DUP of SV<br>Soil Pulp<br>Soil Pulp                                        | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18<br>87<br>29                    | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                            | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                                             | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-26<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30<br>SV-31<br>SV-31<br>SV-32<br>SV-33                                     | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245206<br>245078<br>244946<br>244951<br>244967<br>245108                               | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>723022<br>722815<br>722992<br>722874<br>722780                     | DUP of SV<br>Soil Pulp<br>Soil Pulp                           | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18<br>87<br>29<br>124             | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450                   | 178 | FE450<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575<br>ABJ23001575                                                                                                              | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-24<br>SV-25<br>SV-26<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30<br>SV-31<br>SV-31<br>SV-32<br>SV-33<br>SV-34                                     | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078<br>244946<br>244951<br>244967<br>245108<br>245046           | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>722968<br>722968<br>722815<br>722992<br>722874<br>722780<br>722698 | DUP of SV<br>Soil Pulp<br>Soil Pulp                           | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18<br>87<br>29<br>124<br>53       | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450          | 178 | FE450ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575 | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-23<br>SV-23<br>SV-24<br>SV-25<br>SV-26<br>SV-25<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30<br>SV-31<br>SV-31<br>SV-32<br>SV-33<br>SV-34<br>SV-35 | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078<br>244946<br>244951<br>244967<br>245108<br>245046<br>245154 | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723128<br>723017<br>723015<br>723004<br>722968<br>723022<br>722815<br>722952<br>722874<br>722780<br>722698<br>722698           | DUP of SV<br>Soil Pulp<br>Soil Pulp | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18<br>87<br>29<br>124<br>53<br>99 | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450 | 178 | FE450ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575 | ABJ23001575 |
| SV-15b<br>SV-17<br>SV-18<br>SV-20<br>SV-21<br>SV-22<br>SV-23<br>SV-24<br>SV-25<br>SV-26<br>SV-26<br>SV-27<br>SV-28<br>SV-28<br>SV-30<br>SV-31<br>SV-31<br>SV-32<br>SV-33<br>SV-34                                     | 244903<br>244813<br>244835<br>245182<br>244904<br>244915<br>245052<br>244919<br>244835<br>245117<br>245195<br>245206<br>245078<br>244946<br>244951<br>244967<br>245108<br>245046           | 723085<br>723080<br>723172<br>723263<br>722938<br>723128<br>723317<br>723212<br>723029<br>723015<br>723004<br>722968<br>722968<br>722968<br>722815<br>722992<br>722874<br>722780<br>722698 | DUP of SV<br>Soil Pulp<br>Soil Pulp                           | -15<br>59<br>160<br>96<br>13<br>46<br>52<br>43<br>33<br>18<br>21<br>16<br>71<br>18<br>87<br>29<br>124<br>53       | FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450<br>FE450          | 178 | FE450ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575ABJ23001575 | ABJ23001575 |

| SV-38   | 245164 | 722517 | Soil Pulp | 2   | FE450 | ABJ23001575 |
|---------|--------|--------|-----------|-----|-------|-------------|
| SV-39   | 245247 | 722387 | Soil Pulp | 58  | FE450 | ABJ23001575 |
| SV-40   | 245198 | 723217 | Soil Pulp | 150 | FE450 | ABJ23001575 |
| SV-42   | 245202 | 722853 | Soil Pulp | 77  | FE450 | ABJ23001575 |
| SV-43   | 245211 | 722697 | Soil Pulp | 173 | FE450 | ABJ23001575 |
| SV-44   | 245249 | 722865 | Soil Pulp | 25  | FE450 | ABJ23001575 |
| SV-45   | 245015 | 723495 | Soil Pulp | 67  | FE450 | ABJ23001575 |
| SV-46   | 245038 | 723413 | Soil Pulp | 270 | FE450 | ABJ23001575 |
| SV-47   | 244987 | 723410 | Soil Pulp | 221 | FE450 | ABJ23001575 |
| SV-48   | 245103 | 723377 | Soil Pulp | 61  | FE450 | ABJ23001575 |
| SV-49   | 244933 | 722579 | Soil Pulp | 18  | FE450 | ABJ23001575 |
| SV-50   | 245020 | 722550 | Soil Pulp | 13  | FE450 | ABJ23001575 |
| SV-51   | 245073 | 722631 | Soil Pulp | 114 | FE450 | ABJ23001575 |
| SV-52   | 245208 | 722616 | Soil Pulp | 28  | FE450 | ABJ23001575 |
| SV-54   | 244932 | 723532 | Soil Pulp | 9   | FE450 | ABJ23001575 |
| SV-55   | 244879 | 723497 | Soil Pulp | 171 | FE450 | ABJ23001575 |
| SV-56   | 244853 | 723550 | Soil Pulp | 2   | FE450 | ABJ23001575 |
| SV-57   | 244881 | 723393 | Soil Pulp | 2   | FE450 | ABJ23001575 |
| SV-58   | 244849 | 723350 | Soil Pulp | 8   | FE450 | ABJ23001575 |
| SV-59   | 244944 | 723315 | Soil Pulp | 50  | FE450 | ABJ23001575 |
| SV-60   | 244853 | 723217 | Soil Pulp | 2   | FE450 | ABJ23001575 |
| SV-61   | 244970 | 723269 | Soil Pulp | 45  | FE450 | ABJ23001575 |
| SV-62   | 245325 | 723107 | Soil Pulp | 240 | FE450 | ABJ23001575 |
| SV-63   | 245329 | 723018 | Soil Pulp | 22  | FE450 | ABJ23001575 |
| SV-64   | 245329 | 722912 | Soil Pulp | 29  | FE450 | ABJ23001575 |
| 13HA001 | 244859 | 723493 | Soil      | 249 | FE450 | ABJ21002146 |
| 13HA002 | 244860 | 723463 | Soil      | 91  | FE450 | ABJ21002146 |
| 13HA003 | 244862 | 723435 | Soil      | 29  | FE450 | ABJ21002146 |
| 13HA004 | 244860 | 723403 | Soil      | 10  | FE450 | ABJ21002146 |
| 13HA005 | 244863 | 723374 | Soil      | 6   | FE450 | ABJ21002146 |
| 13HA006 | 244861 | 723343 | Soil      | 7   | FE450 | ABJ21002146 |
| 13HA007 | 244864 | 723315 | Soil      | 10  | FE450 | ABJ21002146 |
| 13HA008 | 244862 | 723285 | Soil      | 15  | FE450 | ABJ21002146 |
| 13HA009 | 244861 | 723252 | Soil      | 13  | FE450 | ABJ21002146 |
| 13HA010 | 244859 | 723223 | Soil      | 13  | FE450 | ABJ21002146 |
| 13HA011 | 244893 | 723493 | Soil      | 61  | FE450 | ABJ21002146 |
| 13HA012 | 244891 | 723463 | Soil      | 27  | FE450 | ABJ21002146 |
| 13HA013 | 244891 | 723433 | Soil      | 10  | FE450 | ABJ21002146 |
| 13HA014 | 244892 | 723403 | Soil      | 14  | FE450 | ABJ21002146 |
| 13HA015 | 244890 | 723375 | Soil      | 7   | FE450 | ABJ21002146 |
| 13HA016 | 244892 | 723338 | Soil      | 12  | FE450 | ABJ21002146 |
| 13HA017 | 244890 | 723312 | Soil      | 113 | FE450 | ABJ21002146 |
| 13HA018 | 244890 | 723279 | Soil      | 12  | FE450 | ABJ21002146 |
| 13HA019 | 244889 | 723252 | Soil      | 17  | FE450 | ABJ21002146 |
|         |        |        |           |     |       |             |

| 13HA020 | 244891 | 723222 | Soil | 138  | FE450 | ABJ21002146 |
|---------|--------|--------|------|------|-------|-------------|
| 13HA021 | 244920 | 723492 | Soil | 9    | FE450 | ABJ21002146 |
| 13HA022 | 244921 | 723463 | Soil | 22   | FE450 | ABJ21002146 |
| 13HA023 | 244921 | 723432 | Soil | 12   | FE450 | ABJ21002146 |
| 13HA024 | 244920 | 723402 | Soil | 10   | FE450 | ABJ21002146 |
| 13HA025 | 244915 | 723375 | Soil | 367  | FE450 | ABJ21002146 |
| 13HA026 | 244920 | 723342 | Soil | 16   | FE450 | ABJ21002146 |
| 13HA027 | 244920 | 723313 | Soil | 19   | FE450 | ABJ21002146 |
| 13HA028 | 244921 | 723287 | Soil | 12   | FE450 | ABJ21002146 |
| 13HA029 | 244920 | 723252 | Soil | 40   | FE450 | ABJ21002146 |
| 13HA030 | 244923 | 723223 | Soil | 75   | FE450 | ABJ21002146 |
| 13HA031 | 244951 | 723491 | Soil | 6    | FE450 | ABJ21002146 |
| 13HA032 | 244950 | 723465 | Soil | 12   | FE450 | ABJ21002146 |
| 13HA033 | 244948 | 723431 | Soil | 140  | FE450 | ABJ21002146 |
| 13HA034 | 244948 | 723400 | Soil | 302  | FE450 | ABJ21002146 |
| 13HA035 | 244951 | 723370 | Soil | 186  | FE450 | ABJ21002146 |
| 13HA036 | 244952 | 723342 | Soil | 53   | FE450 | ABJ21002146 |
| 13HA037 | 244952 | 723314 | Soil | 45   | FE450 | ABJ21002146 |
| 13HA038 | 244950 | 723282 | Soil | 77   | FE450 | ABJ21002146 |
| 13HA039 | 244953 | 723251 | Soil | 23   | FE450 | ABJ21002146 |
| 13HA040 | 244949 | 723222 | Soil | 18   | FE450 | ABJ21002146 |
| 13HA041 | 244982 | 723496 | Soil | 25   | FE450 | ABJ21002146 |
| 13HA042 | 244981 | 723463 | Soil | 128  | FE450 | ABJ21002146 |
| 13HA043 | 244982 | 723434 | Soil | 945  | FE450 | ABJ21002146 |
| 13HA044 | 244985 | 723401 | Soil | 880  | FE450 | ABJ21002146 |
| 13HA045 | 244980 | 723375 | Soil | 34   | FE450 | ABJ21002146 |
| 13HA046 | 244979 | 723345 | Soil | 245  | FE450 | ABJ21002146 |
| 13HA047 | 244979 | 723315 | Soil | 84   | FE450 | ABJ21002146 |
| 13HA048 | 244980 | 723282 | Soil | 73   | FE450 | ABJ21002146 |
| 13HA049 | 244978 | 723252 | Soil | 42   | FE450 | ABJ21002146 |
| 13HA050 | 244981 | 723220 | Soil | 62   | FE450 | ABJ21002146 |
| 13HA051 | 245006 | 723493 | Soil | 86   | FE450 | ABJ21002146 |
| 13HA052 | 245012 | 723464 | Soil | 178  | FE450 | ABJ21002146 |
| 13HA053 | 245009 | 723435 | Soil | 465  | FE450 | ABJ21002146 |
| 13HA054 | 245010 | 723403 | Soil | 360  | FE450 | ABJ21002146 |
| 13HA055 | 245012 | 723376 | Soil | 1985 | FE450 | ABJ21002146 |
| 13HA056 | 245014 | 723344 | Soil | 86   | FE450 | ABJ21002146 |
| 13HA057 | 245010 | 723316 | Soil | 69   | FE450 | ABJ21002146 |
| 13HA058 | 245010 | 723283 | Soil | 63   | FE450 | ABJ21002146 |
| 13HA059 | 245015 | 723254 | Soil | 27   | FE450 | ABJ21002146 |
| 13HA060 | 245012 | 723224 | Soil | 20   | FE450 | ABJ21002146 |
| 13HA061 | 245041 | 723493 | Soil | 169  | FE450 | ABJ21002146 |
| 13HA062 | 245042 | 723461 | Soil | 152  | FE450 | ABJ21002146 |
| 13HA063 | 245044 | 723433 | Soil | 271  | FE450 | ABJ21002146 |
|         |        |        |      |      |       |             |

| 13HA064 | 245039 | 723403 | Soil | 56   | FE450 | ABJ21002146 |
|---------|--------|--------|------|------|-------|-------------|
| 13HA065 | 245040 | 723374 | Soil | 560  | FE450 | ABJ21002146 |
| 13HA066 | 245039 | 723344 | Soil | 47   | FE450 | ABJ21002146 |
| 13HA067 | 245039 | 723312 | Soil | 142  | FE450 | ABJ21002146 |
| 13HA068 | 245043 | 723283 | Soil | 42   | FE450 | ABJ21002146 |
| 13HA069 | 245038 | 723254 | Soil | 88   | FE450 | ABJ21002146 |
| 13HA070 | 245039 | 723222 | Soil | 37   | FE450 | ABJ21002146 |
| 13HA071 | 245068 | 723490 | Soil | 61   | FE450 | ABJ21002146 |
| 13HA072 | 245073 | 723490 | Soil | 1115 | FE450 | ABJ21002146 |
| 13HA073 | 245070 | 723430 | Soil | 207  | FE450 | ABJ21002146 |
| 13HA074 | 245073 | 723401 | Soil | 122  | FE450 | ABJ21002146 |
| 13HA075 | 245070 | 723372 | Soil | 1193 | FE450 | ABJ21002146 |
| 13HA076 | 245069 | 723338 | Soil | 71   | FE450 | ABJ21002146 |
| 13HA077 | 245073 | 723313 | Soil | 94   | FE450 | ABJ21002146 |
| 13HA078 | 245074 | 723285 | Soil | 296  | FE450 | ABJ21002146 |
| 13HA079 | 245071 | 723257 | Soil | 323  | FE450 | ABJ21002146 |
| 13HA080 | 245069 | 723216 | Soil | 307  | FE450 | ABJ21002146 |
| 13HA081 | 245101 | 723494 | Soil | 15   | FE450 | ABJ21002146 |
| 13HA082 | 245105 | 723465 | Soil | 37   | FE450 | ABJ21002146 |
| 13HA083 | 245102 | 723431 | Soil | 430  | FE450 | ABJ21002146 |
| 13HA084 | 245104 | 723407 | Soil | 107  | FE450 | ABJ21002146 |
| 13HA085 | 245103 | 723373 | Soil | 65   | FE450 | ABJ21002146 |
| 13HA086 | 245104 | 723342 | Soil | 160  | FE450 | ABJ21002146 |
| 13HA087 | 245101 | 723316 | Soil | 218  | FE450 | ABJ21002146 |
| 13HA088 | 245092 | 723283 | Soil | 60   | FE450 | ABJ21002146 |
| 13HA089 | 245102 | 723248 | Soil | 129  | FE450 | ABJ21002146 |
| 13HA090 | 245100 | 723225 | Soil | 154  | FE450 | ABJ21002146 |
| 13HA091 | 245130 | 723486 | Soil | 619  | FE450 | ABJ21002146 |
| 13HA092 | 245133 | 723460 | Soil | 35   | FE450 | ABJ21002146 |
| 13HA093 | 245131 | 723433 | Soil | 41   | FE450 | ABJ21002146 |
| 13HA094 | 245131 | 723403 | Soil | 50   | FE450 | ABJ21002146 |
| 13HA095 | 245130 | 723369 | Soil | 62   | FE450 | ABJ21002146 |
| 13HA096 | 245130 | 723341 | Soil | 75   | FE450 | ABJ21002146 |
| 13HA097 | 245130 | 723310 | Soil | 114  | FE450 | ABJ21002146 |
| 13HA098 | 245132 | 723280 | Soil | 241  | FE450 | ABJ21002146 |
| 13HA099 | 245126 | 723254 | Soil | 911  | FE450 | ABJ21002146 |
| 13HA100 | 245127 | 723223 | Soil | 73   | FE450 | ABJ21002146 |
| 13HA101 | 245162 | 723488 | Soil | 45   | FE450 | ABJ21002146 |
| 13HA102 | 245163 | 723464 | Soil | 95   | FE450 | ABJ21002146 |
| 13HA103 | 245159 | 723431 | Soil | 490  | FE450 | ABJ21002146 |
| 13HA104 | 245163 | 723404 | Soil | 180  | FE450 | ABJ21002146 |
| 13HA105 | 245159 | 723373 | Soil | 72   | FE450 | ABJ21002146 |
| 13HA106 | 245163 | 723341 | Soil | 169  | FE450 | ABJ21002146 |
| 13HA107 | 245163 | 723314 | Soil | 226  | FE450 | ABJ21002146 |
|         |        |        |      |      |       |             |

| 13HA108 | 245162 | 723284 | Soil | 56   | FE450 | ABJ21002146 |
|---------|--------|--------|------|------|-------|-------------|
| 13HA109 | 245161 | 723256 | Soil | 165  | FE450 | ABJ21002146 |
| 13HA110 | 245162 | 723228 | Soil | 91   | FE450 | ABJ21002146 |
| 13HA111 | 245189 | 723495 | Soil | 44   | FE450 | ABJ21002146 |
| 13HA112 | 245192 | 723463 | Soil | 42   | FE450 | ABJ21002146 |
| 13HA113 | 245191 | 723436 | Soil | 76   | FE450 | ABJ21002146 |
| 13HA114 | 245188 | 723407 | Soil | 219  | FE450 | ABJ21002146 |
| 13HA115 | 245192 | 723374 | Soil | 186  | FE450 | ABJ21002146 |
| 13HA116 | 245194 | 723342 | Soil | 182  | FE450 | ABJ21002146 |
| 13HA117 | 245189 | 723312 | Soil | 98   | FE450 | ABJ21002146 |
| 13HA118 | 245192 | 723285 | Soil | 96   | FE450 | ABJ21002146 |
| 13HA120 | 245190 | 723219 | Soil | 215  | FE450 | ABJ21002146 |
| 13HA121 | 245221 | 723493 | Soil | 43   | FE450 | ABJ21002146 |
| 13HA122 | 245222 | 723466 | Soil | 39   | FE450 | ABJ21002146 |
| 13HA123 | 245221 | 723436 | Soil | 114  | FE450 | ABJ21002146 |
| 13HA124 | 245226 | 723401 | Soil | 64   | FE450 | ABJ21002146 |
| 13HA125 | 245219 | 723376 | Soil | 422  | FE450 | ABJ21002146 |
| 13HA126 | 245218 | 723342 | Soil | 236  | FE450 | ABJ21002146 |
| 13HA127 | 245225 | 723314 | Soil | 101  | FE450 | ABJ21002146 |
| 13HA128 | 245225 | 723286 | Soil | 290  | FE450 | ABJ21002146 |
| 13HA130 | 245220 | 723224 | Soil | 1242 | FE450 | ABJ21002146 |
| 13HA131 | 245252 | 723496 | Soil | 400  | FE450 | ABJ21002146 |
| 13HA132 | 245246 | 723463 | Soil | 137  | FE450 | ABJ21002146 |
| 13HA133 | 245250 | 723430 | Soil | 71   | FE450 | ABJ21002146 |
| 13HA134 | 245249 | 723404 | Soil | 60   | FE450 | ABJ21002146 |
| 13HA135 | 245250 | 723375 | Soil | 218  | FE450 | ABJ21002146 |
| 13HA136 | 245254 | 723340 | Soil | 128  | FE450 | ABJ21002146 |
| 13HA137 | 245252 | 723311 | Soil | 97   | FE450 | ABJ21002146 |
| 13HA138 | 245249 | 723277 | Soil | 486  | FE450 | ABJ21002146 |
| 13HA139 | 245251 | 723251 | Soil | 1211 | FE450 | ABJ21002146 |
| 13HA140 | 245252 | 723222 | Soil | 427  | FE450 | ABJ21002146 |
| 13HA141 | 245281 | 723493 | Soil | 185  | FE450 | ABJ21002146 |
| 13HA142 | 245280 | 723464 | Soil | 49   | FE450 | ABJ21002146 |
| 13HA143 | 245279 | 723437 | Soil | 65   | FE450 | ABJ21002146 |
| 13HA144 | 245279 | 723395 | Soil | 642  | FE450 | ABJ21002146 |
| 13HA145 | 245277 | 723373 | Soil | 471  | FE450 | ABJ21002146 |
| 13HA146 | 245282 | 723344 | Soil | 139  | FE450 | ABJ21002146 |
| 13HA147 | 245286 | 723316 | Soil | 495  | FE450 | ABJ21002146 |
| 13HA148 | 245280 | 723284 | Soil | 129  | FE450 | ABJ21002146 |
| 13HA149 | 245279 | 723257 | Soil | 181  | FE450 | ABJ21002146 |
| 13HA151 | 245310 | 723487 | Soil | 32   | FE450 | ABJ21002146 |
| 13HA152 | 245314 | 723462 | Soil | 46   | FE450 | ABJ21002146 |
| 13HA153 | 245311 | 723428 | Soil | 848  | FE450 | ABJ21002146 |
| 13HA154 | 245311 | 723402 | Soil | 80   | FE450 | ABJ21002146 |
|         |        |        |      |      |       |             |

•

| 13HA155 | 245313 | 723373 | Soil | 63  | FE450 | ABJ21002146 |
|---------|--------|--------|------|-----|-------|-------------|
| 13HA156 | 245315 | 723341 | Soil | 290 | FE450 | ABJ21002146 |
| 13HA157 | 245311 | 723316 | Soil | 70  | FE450 | ABJ21002146 |
| 13HA158 | 245310 | 723282 | Soil | 125 | FE450 | ABJ21002146 |
| 13HA159 | 245310 | 723252 | Soil | 48  | FE450 | ABJ21002146 |
| 13HA160 | 245312 | 723224 | Soil | 183 | FE450 | ABJ21002146 |